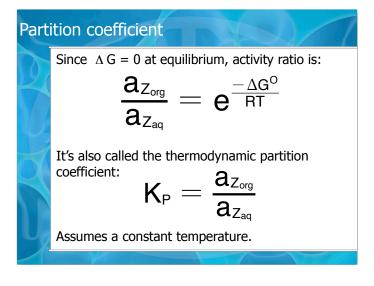
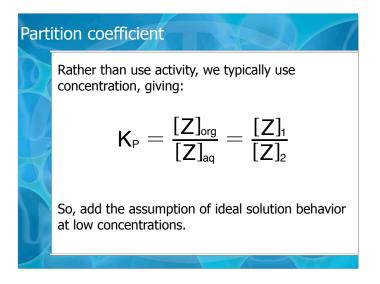
Solvent Extraction

A significant method based on relative solubility of an analyte in two immiscible liquids

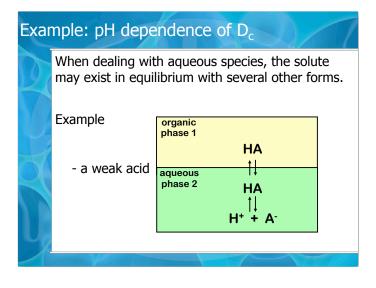
Used to

remove interference concentrate species prior analysis produce measurable form of a species

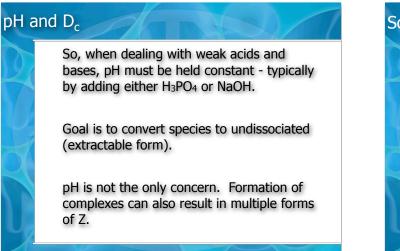

Basic theory is applicable to chromatography.


For a solute, Z, in equilibrium exists between two
immiscible solvents.

$$Z_{aq} \rightleftharpoons Z_{org}$$


$$\Delta G = \Delta G^{o} + RT \ln a_{Z_{org}} - RT \ln a_{Z_{aq}}$$

$$\Delta G = \Delta G^{o} + RT \ln \frac{a_{Z_{org}}}{a_{Z_{aq}}}$$
where a = activity
G = free energy
One of the solvents is usually water and that's what we'll
focus on - as the phase we extract 'from.'


Distribution ratio Due to potential for competing equilibria, we define an alternate form of the partition coefficient: Distribution ratio $D_{c} = \frac{[Z_{total}]_{org}}{[Z_{total}]_{aq}} = \frac{[Z_{total}]_{1}}{[Z_{total}]_{2}}$ Total Z represents the total of all equilibrium forms of species Z. This ratio is based on specific solution conditions such as pH.

Example: pH dependence of D_c

Where
$$K_P = \frac{[HA]_1}{[HA]_2}$$
 and $K_a = \frac{[H^+]_2[A^-]_2}{[HA]_2}$
 $D_c = \frac{[HA]_1}{[HA]_2 + [A^-]_2} = \frac{[HA]_1}{\frac{[HA]_1}{K_P} + \frac{K_a[HA]_1}{K_P[H^+]_2}}$
 $= \frac{K_P[H^+]_2}{[H^+]_2 + K_a}$

Example: pH dependence of D_c In the case of a weak acid, D_c is highly dependent on solution pH. $D_c = \frac{K_P [H^+]_2}{[H^+]_2 + K_a}$ A plot of log D_c vs log pH shows two regions. $1 - [H^+] \gg K_a, D_c \cong K_P$ $2 - D_c$ is pH dependent

Solute partitioning $D_{c} \text{ can be defined based on total equilibrium concentrations as:} \\ D_{c} = \frac{C_{1}}{C_{2}} \\ \text{where:} \\ 1 \text{ is the phase being extracted into} \\ 2 \text{ is the phase being extracted from} \\ \text{All solution conditions are assumed constant unless otherwise noted. Total solute amounts are based on solution volume.} \end{cases}$

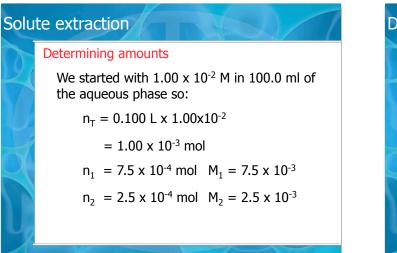
Solute partitioning The initial moles of solute is C_0V_2 so at equilibrium: $n_{solute1} = C_1V_1$ $n_{solute2} = C_2V_2$ In terms of fractional amounts: $p = fraction in 1 = \frac{C_1V_1}{C_1V_1 + C_2V_2}$ $q = fraction in 2 = \frac{C_2V_2}{C_1V_1 + C_2V_2}$

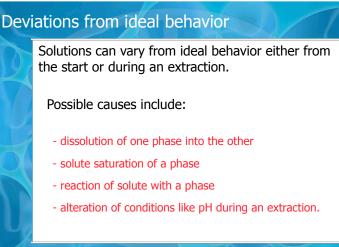
Solute partitioning
If we define the volume ratio (V_R) as

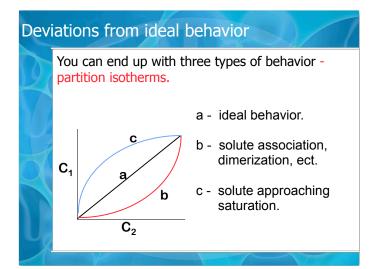
$$V_R = \frac{V_1}{V_2}$$
then $q = \frac{1}{D_C V_R + 1}$ $p = \frac{D_C V_R}{D_C V_R + 1}$

Single extractions

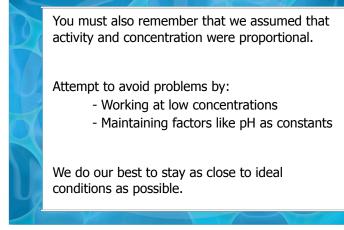
To help keep things straight, let's define some conditions for a single extraction or contact unit. Most often, we are interested in extracting from an aqueous into an organic phase. organic phase density > or < 1.00 g/ml - call phase 1 aqueous phase density ~ 1.00 g/ml - call phase 2

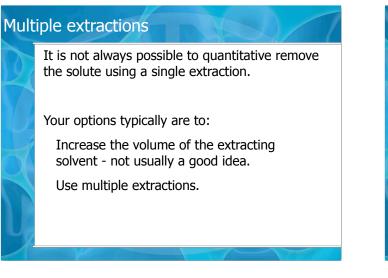

Single Extractions

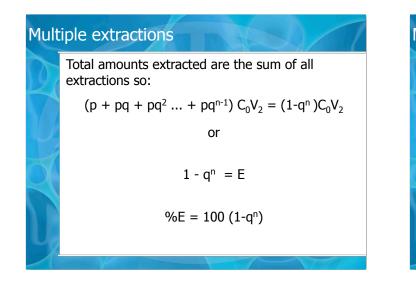

If the aqueous phase is what we are extracting from, then:


- V volumes, all must be in same units
- C total concentrations
- C₁ organic concentration
- C₂ aqueous concentration
- C₀ initial concentration

Solu	te extraction
D	We can determine the percent extracted as: $\%$ E = 100 p
	Example For a solute, X, determine [X] and total amounts in each phase if: $V_1 = 100.0 \text{ ml}$ $V_2 = 100.0 \text{ ml}$
U,	$D_c = 3.0$ [X] ₀ = 1.00 x 10 ⁻² M (in aqueous phase)


Solute extraction
Since
$$V_1 = V_2$$
, $V_R = 1$,
 $p = \frac{D_c V_R}{D_c V_R + 1} = \frac{3.0}{3.0 + 1} = \frac{3}{4}$
 $q = \frac{1}{D_c V_R + 1} = \frac{1}{3.0 + 1} = \frac{1}{4}$
% E = 100 p = 75%

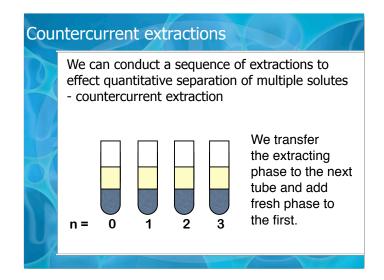




Deviations from ideal behavior

Multiple extractions		
D	For n extractions, the amount of solute in each phase can be determined by:	
	organic phase $pq^{n-1}C_0V_2$	
	aqueous phase $q^n C_o V_2$	
	Solute concentrations can be found by:	
	$\frac{\text{organic}}{V_1} \frac{pq^{n-1}C_oV_2}{V_1} = \frac{pq^{n-1}C_o}{V_R}$	
	$\frac{q^nC_oV_2}{V_2} = q^nC_o$	

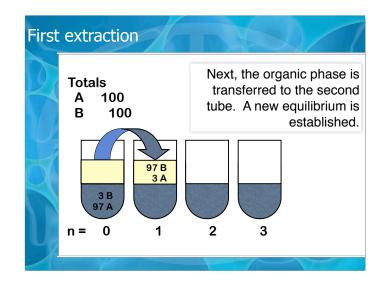
Multiple extractions In our earlier example, 75% of a solute was removed with one extraction. We can determine how much would be removed from 10 sequential extractions. n = 10 q = 0.25 $E = 1 - 0.25^{10} = 1 - 9.6 \times 10^{-7}$ % E = 99.9999%

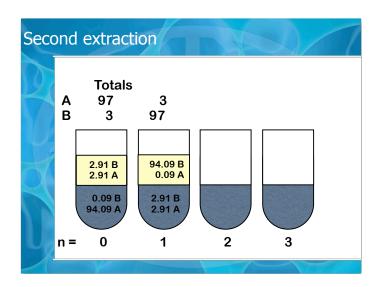

Countercurrent extractions

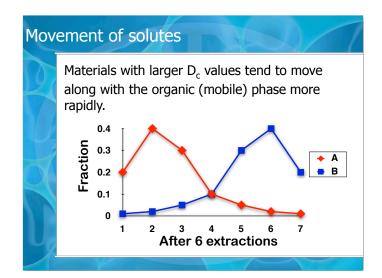
A precursor to chromatography.

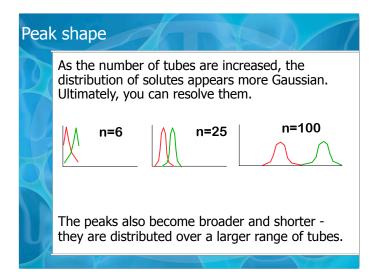
Multiple extractions can effectively remove a single species or a group of related species at the same time.

What do you do if the goal is to separate two or more species with similar D_c values?


Even if the D_c values for two species differ by 1000, you still can't get better than 97% purity.




Countercurrent extractions


Assume

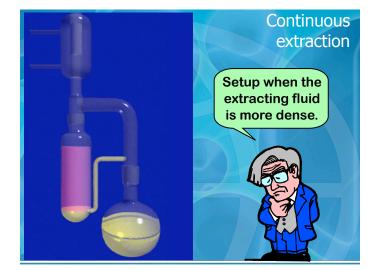
- Equimolar amounts of solutes A and B.
- Equal volumes of both phases
- A single extraction with an organic phase removes 3% of A and 97% of B.
- After each extraction, you transfer the organic phase to the next tube and add fresh organic phase to the original one.

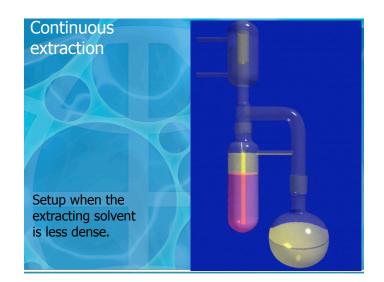
Continuous extraction

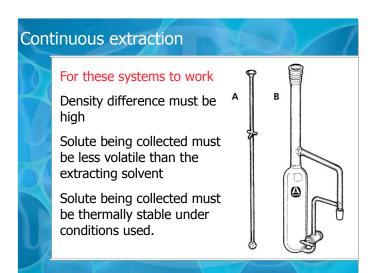
In some cases, it is difficult to efficiently remove a solute unless a large number of extractions are conducted.

An alternate approach is a continuous extraction.

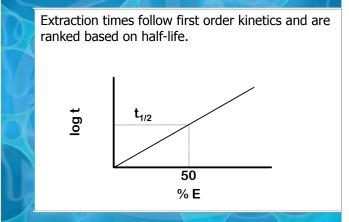
With an appropriate setup, an efficient extraction can be conducted with a minimum of extracting solvent.

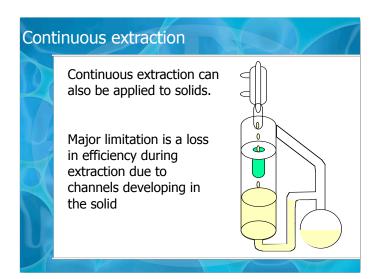


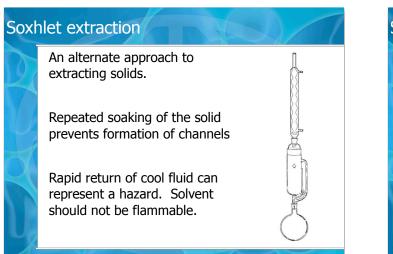

Advantages


-----[Only uses a small amount of solvent

Setup


Dependent on relative density of liquids or if solids are to be extracted.





Continuous extraction

Solid Phase Extraction SPE involves separation of components from a liquid on to a solid medium. Mechanism is identical to what will be outlined in LC unit. While factors such as pH and ionic strength play a role, the nature of the sorbent is often the most important factor. Becoming more popular as a method for removing and concentrating trace organic materials from aqueous media.

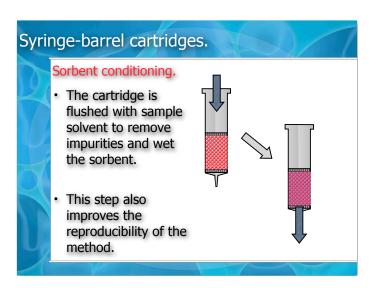
Solid Phase Sorbents

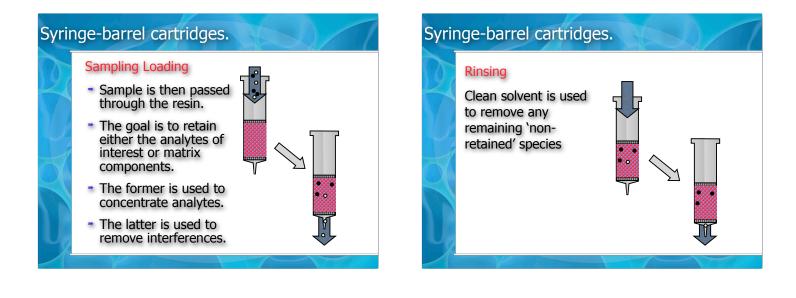
Common phases

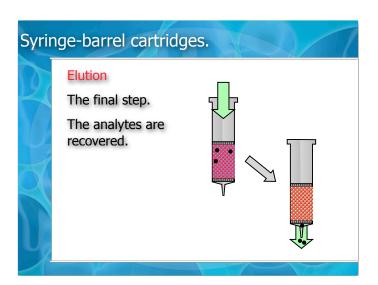
- \bullet C8 and C18 bound phases on silica (most popular).
- Unmodified silica
- Polymeric resins -- polystyrene/divinyl benzene copolymers
- Fluorosil (activated magnesium silicate)
- Alumina
- Charcoal

The silica and bound phase are similar to HPLC phases. The particle size is typically larger than HPLC phases - 40 - 60 μm in diameter.

SPE

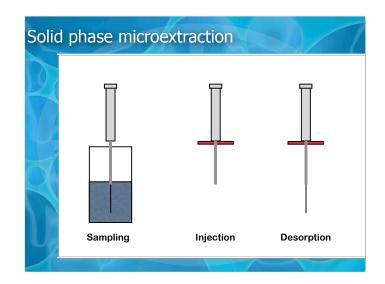

The basic idea is to collect (extract) the materials (isolates) of interest on a sorbent and then elute them using a second solvent. This can be set up to:


- 1. Remove water.
- 2. Remove interfering species
- 3. Concentrate the isolates.


The most common format used is the 'Syringebarrel' cartridge approach.

Syringe-barrel cartridges.

- The SPE is carried out using a small packed bed of sorbent (25 - 500 mg).
- The sorbent is contained in a polypropylene syringe barrel and is retained using fritted disks.
- Sorbent typically only fills about half of the barrel so it can accommodate several milliliters of sample solution.
- A distinct four step procedure is then followed to prepare the sample



Other approaches		
	Thin porous glass fibers.	
21	Thin coated glass fibers.	
	 PTFE disks (teflon) in which sorbent particles are embedded. 	
	Disposable plastic pipette tip fitted with sorbent beds.	
	The basic process is the same as with the syringe-barrel method.	
U,	Coated glass fibers are also being evaluated for solid phase microextraction	

Solid phase microextraction

- ▷ A fiber (~1 cm) is attached to a modified microsyringe.
- ▷ It is then used to extract trace components from a liquid or gas sample.
- ▷ The fiber is retracted into the needle of the syringe.
- ▷ The needle is then injected into a gas or liquid chromatograph.
- ▷ The fiber is then exposed and the sample components desorbed.

