

Solvent extraction theory

For a solute, Z, in equilibrium exists between an aqueous and organic solvent:

At equilibrium, we have:

$$K_{P} = \begin{bmatrix} Z \\ Z \end{bmatrix}_{2}^{1}$$

This assumes ideal behavior at low concentrations. It actually results in a ternary system.

C			Solute	extra	action		
S	ince V	′ ₁ = `	V ₂ , V _R = 1,				
Am ext	^{ount} P	=	D _c V _R D _c V _R +1	-	3.0 3.0+1	=	3 4
Am ren	^{ount} naining Q	=	1 D _c V _R +1	=	1 3.0+1	=	1 4
	%E	=	100 p = 75	5%			

Multiple extractions

It is not always possible to quantitatively remove the solute using a single extraction.

Your options typically are to:

Increase the volume of the extracting solvent - not usually a good idea. Use multiple extractions.

Multiple extractionsFor n extractions, the amount of solute in each phase can be determined by:organic phase $pq^{n-1} C_0 V_2$ aqueous phase $q^n C_0 V_2$ Solute concentrations can be found by:organic $pq^{n-1} C_0 V_2 / V_1 = pq^{n-1} C_0 / V_R$ aqueous $q^n C_0 V_2 / V_2 = q^n C_0$

Continuous extraction

In some cases, it is difficult to efficiently remove a solute unless a large number of extractions are conducted.

An alternate approach is a continuous extraction.

With an appropriate setup, an efficient extraction can be conducted with a minimum of extracting solvent.

Continuous extraction

Advantages

Only uses a small amount of solvent Can remove a high percent of a solute Can work unattended for long periods

Setup

Dependent on relative density of liquids or if solids are to be extracted.

Some extraction methods

- Organic species "Like disolves like"
- Ionizing organic species
 Limit ionization by controlling pH
- Use of organic complexing reagents.
 Many reagents available to complex metal ions - more soluble in organic phase.
- Ion-association complexes
 Formation of neutral ion pairs.

