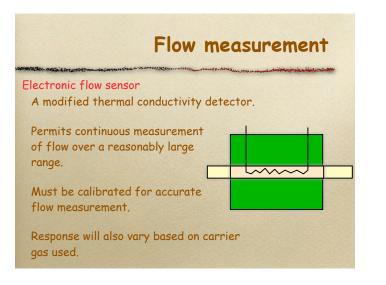
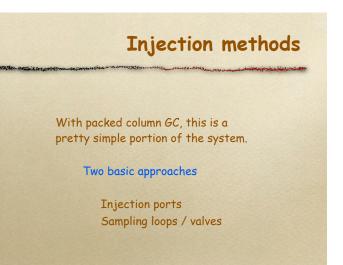
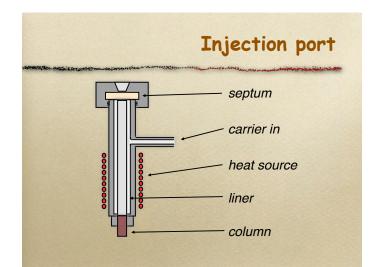

Gas chromatography


First instrumental chromatographic method developed commercially.


Reason - it is relatively easy to produce a stable flow and pressure for the mobile phase carrier gas.


All that is really needed is a tank of compressed gas, pressure regulator and a valve.

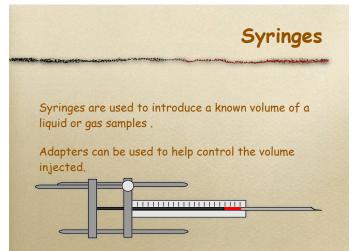
Injection port

Purpose of port is to flash evaporate your sample and introduce it into the column.

T_{INJ} 25 - 50°C above T_{column}

Injection is through a septum.

Septum must be stable at the T_{inj} replaced regularly to maintain seal


Injection port

Liner.

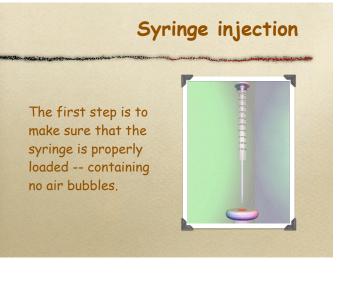
Provides a known area for the flash vaporization.

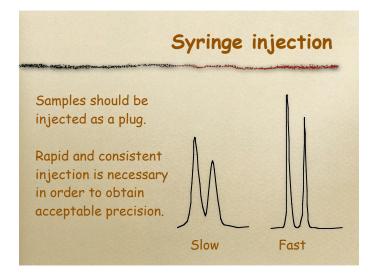
Typically made of glass although metal liners may be used. Some instruments don't have liners. Some columns will extend through the port, directly to the septum.

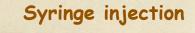
It can and should be replaced at regular intervals - all non-volatile materials and degradation products end up here.

Syringes Various styles are available Fixed needle Removable needle Several needle lengths and angles Sample volumes from < 1 µl an up</td> Body loading Through the barrel plungers

Autoinjector



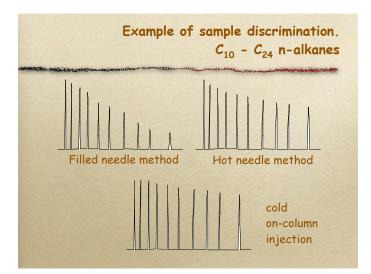

Syringe injection methods


Major source of precision error is from poor injection technique.

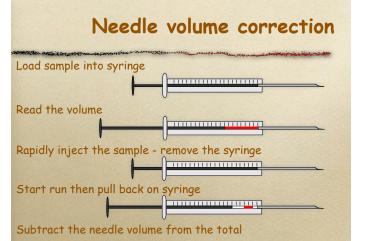
Both automatic and manual injection methods are available.

If automatic equipment is present, use it. If not, several approaches can be tried to help reduce injection errors.

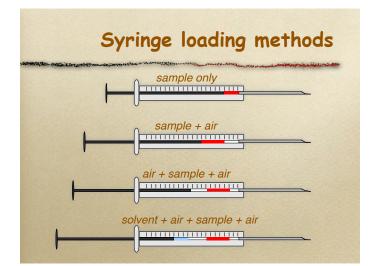
When loading a syringe, you can see how much sample is in the barrel but not in the needle.

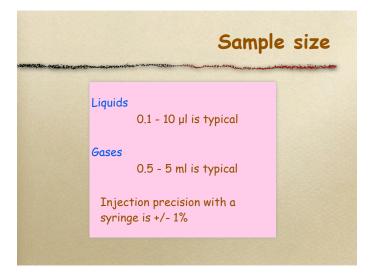

During injection, some sample can volatilize from the needle tip, causing poor precision.

This can result in sample discrimination- worst for capillary column injections.

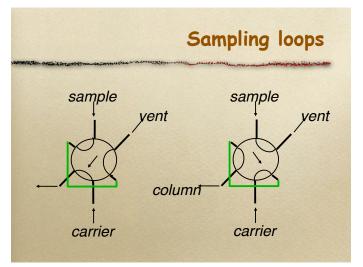

Syringe injection

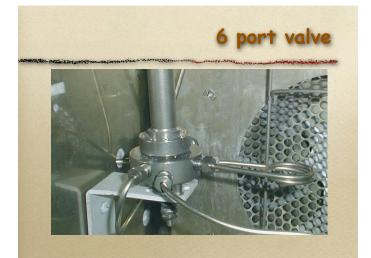
After injection, it is relatively easy to determine how much material remains in the needle.





- 1. Draw sample into syringe barrel.
- 2. Next, draw 2-3 µl air into barrel.
- 3. Insert needle into injection port and allow to heat for a few seconds.
- 4. Rapidly inject sample and withdraw the needle.
- This insures that all sample is injected and the 'hot needle' assists in solvent volatilization.

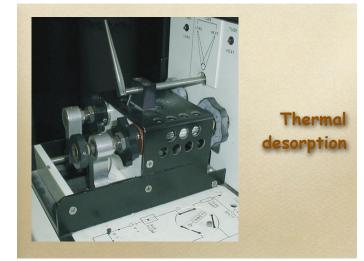



Gas sampling loops

Introducing a constant amount of a gas can be difficult with a syringe.

Gas sampling loops and valves offer a high precision (+/- 0.1%) means of introducing gases.

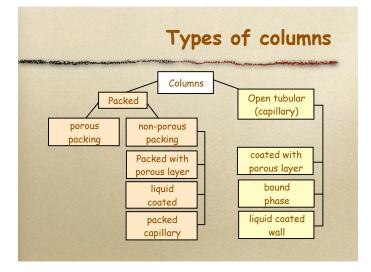
Equipment is relative inexpensive and only requires a constant temperature for easy use.

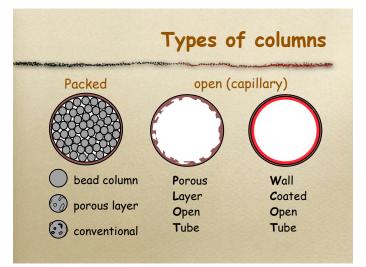

The lower portion is normally covered with insulation.

It's been removed so you can see the ports.

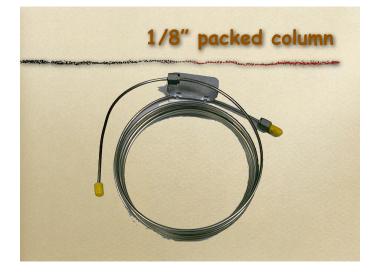
Thermal desorption

- An alternate method of 'injecting' samples.
- Samples are trapped on an adsorbent and then thermally desorbed and injected.




Columns

- · Heart of the separation process.
- Vast number of materials have been evaluated.
- It is usually best to refer to various catalogs as an up to date reference.
- Can be classified by tubing diameter and packing type.


Types of columns

Conventional 1/8-1/4" OD, stainless steel or glass tube 6 - 20 feet in length Preparative > 1/4" >10 feet in length Capillary 0.1 - 0.5 mm ID 10 - 100 meters in length

Stainless steel capillary column

Fused silica capillary column

Packed column selection

We'll deal with capillary columns in the next unit. For now, let's go over how to select an appropriate column.

Unless you're developing new packing materials or methods, the best starting point is to consult a chromatographic catalog.

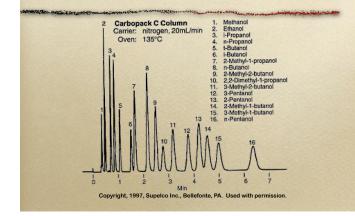
They provide a wealth of information regarding cost, temperature limits, sample applications

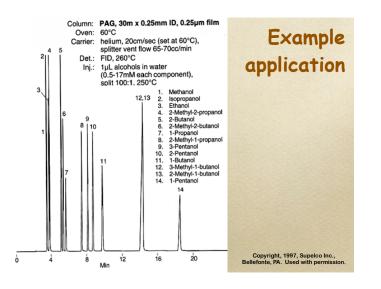
Examples of stationary phases

Phase [USP Code] (Solvent)	Temp. (°C) Min/Max
OV-351, 10g (C)	50/270
(suggested substitute: SP-1000 OV-1701, vinyl, 3g	0) 0/250 0/75
β,β-Oxydipropionitrile, 50g (M) Phenyldiethanolamine succinate [25g (C)	G12], 0/230
Polyethylene glycol adipate (EGA) 25g (A)	
Polyethyleneimine, 50g (A) Polyphenyl ether (5 rings) OS-124	0/175 I, 0/200
25g (A) Polyphenyl ether (6 rings) OS-138 25g (A)	
Polypropylene glycol, 50g (M) Polypropyleneimine, 10g (C) PPE-20 (poly-M-phenoxylene) (C)	0/150 0/200 125/375

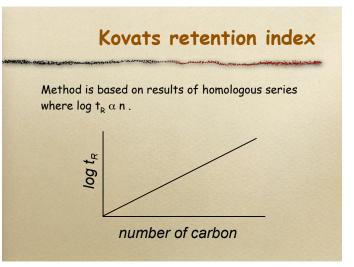
Examples of packings

Packing Description	Use	Min./Max. Temp. (°C)
Activated Alumina		
Alumina F-1, 60/80 80/100	Light Hydrocarbons	300 max.
GP 10% Apiezon L/2% KOH on 80/100 Chromosorb W AW	Amphetamines	225 max.
10% Abiezon L/2% KOH on 80/100 Chromosorb W AW	Amines	50/225
GP 35% BC-120 on 100/120 Chromosorb P AW-DMDCS	Benzene	0/125
35% BC-150 on 100/120 Chromosorb P AW-DMDCS	Benzene	0/240
Carbopack B		
Carbopack B, 60/80	Light Hydrocarbons	>500
Carbopack B HT, 60/60, (hydrogen treated)		225
40/60 Carbopack B HT® 100 Monopak*	Sullur Gases	150 mex.
4% CARBOWAX 20M/0.8% KOH/60/80 Carbopack B Monopak*	Amines	220 max.
5% CARBOWAX 20M/GP 60/80 Carbopack B	Blood Alcohols	225 max.
4% CARBOWAX 20M /80/120 Carbopack B-DA*	C2-C5 Acids	200 max.
5.0% CARBOWAX 20M/80/120 Carbopack B AW Monopak*	Alcoholic Beverages	225 max.
6.5% CARBOWAX 20M/80/120 Carbopack B AW	Alcoholic Beverages	225 max.
5% Fluorcol on 60/60 Carbopaok B (see Packed Column section)	Freens	150 max.
2.5% Oronite NIW/60/60 Carbopack B	Alcohole, Esters, Ketones, General	200 max.
1% SP-1000/60/80 Carbopack B	Halogenated Organics	225 max.


Examples of empty columns

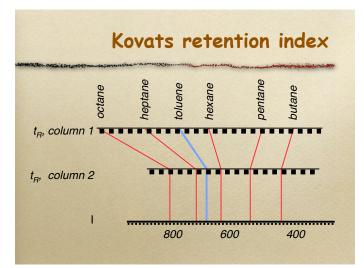

Chro	matograph	Sket	ch (not	to scale	
HP 5880, 5890 Configuration B [•] ⊤CD only		(Q		
-	XYS	Length	OD	ID (mm	
X	11.02" 280mm	6'/1.83m	1⁄4"	2	
Y	7.09"	10'/3.05m	1⁄4 "	2	
s	180mm 9"	6'/1.83m Other◆	1⁄4"	4	

Copyright, 1997, Supelco Inc., Bellefonte, PA. Used with permission.


Example application

<text><text><text>

Kovats retention index


The index value for any material can be found from:

$$I = 100 \frac{log V_{\text{R}(\text{unk})}^{\text{o}} - log V_{\text{R}(\text{n}-\text{C}_{n})}^{\text{o}}}{log V_{\text{R}(\text{n}-\text{C}_{n+1})}^{\text{o}} - log V_{\text{R}(\text{n}-\text{C}_{n})}^{\text{o}}} + 100 \text{n}$$

 V_{R}° - net retention volume, can use t_{R}

$$V_{R}^{\circ}(n-C_{n}) < V_{R}^{\circ}(unknown) < V_{R}^{\circ}(n-C_{n+1})$$

n-paraffins are used as reference standards and must bracket the unknown.

Kovats retention index All that is really being done is to normalize each component compared to n-paraffins. It assumes that you are dealing with either identical or at least very similar columns or packings. Packing that have large differences can result in geaks eluting in different orders - the method would then be useless

McReynolds constants

Method to evaluate a wide range of phases.

- Based on measuring performance for a set of representative substances.
- · Often provided by suppliers
- Can tell if two phases should give comparable performance or if a phase is better for specific functional groups.

McR	Reynolds c	onstants
Group	Substance	Symbol
aromatic, olefinic	benzene	X'
alcohols, phenols, acids	1-butanol	У′
ketones, ethers, esters, aldehydes	methyl-n-propyl ketone	Ι Ζ'
nitro, nitriles	nitropropane	U'
bases, aromatic hetrocyclics	pyridine	5'

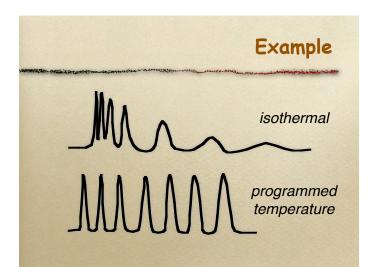
McReynolds constants

Squalane is used as the reference material and all other packings are normalized to it.

Packing	T _{MAX}	X	У'	Ζ'	U'	5'
squalane	150	0	0	0	0	0
SE-30	350	15	53	44	64	41
OV-7	350	69	113	111	171	128
Carbowax 20M	250	322	536	368	572	59

Temperature programming

The column sits in an oven.


If the temperature is held constant during the entire analysis it is isothermal.

If you vary the temperature during the analysis, you typically use a temperature program.

Why bother?

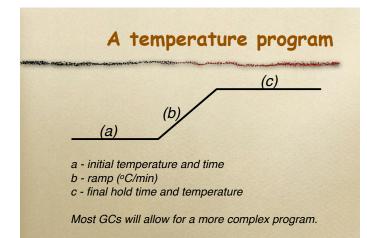
Temperature programming

- With homologues, the retention time increases exponentially with the number of carbon.
- As t_R increases, width increases and the height decreases, making detection impossible after a few peaks have eluted.
- Since solubility of a gas in a liquid decreases as temperature goes up, we can reduce the retention of a material by increasing T_{column}.

Temperature programming

Factors to consider:

Variations in solubility of solutes


Changes in volatility of solutes

Stability of solutes

Flowrate changes

Stability of stationary phase

Must stay within T_{min}/T_{max} of column. Other factors are found experimentally.

Temperature programming General steps to create a program assuming that the separation is possible. 1. Determine initial temperature and time based on best possible separation of first few peaks.

- 2. Repeat 1 for the last few peaks to find the best final temperature and time.
- 3. Experiment with various ramps to account for the rest of the components.

Detectors

We need a way to measure our eluents as they evolve from the column.

Virtually every method of directly or indirectly observing eluents as been looked at.

We'll cover some of the more common types.

Detectors

Each can be roughly classified based on

Destructive vs. nondestructive

General vs. some discrimination vs. very discriminating

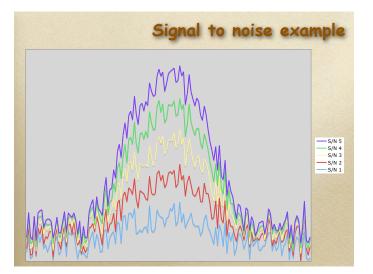
Let's start by reviewing some general concepts such as detection limit and sensitivity.

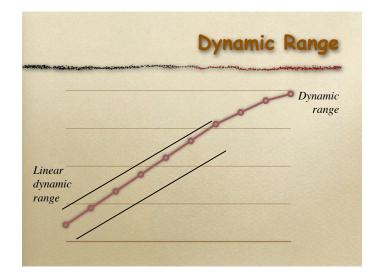
Properties of a good detector

High sensitivity - possible selectivity Rapidly respond to concentration changes Large linear range Stable with respect to noise and drift Low sensitivity to variations in flow, pressure and temperature Produces an easily handled signal

Detector Response Characteristics

Sensitivity

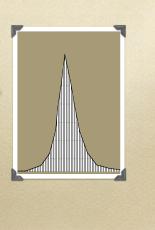

Response per amount of sample. Slope of response/amount curve.

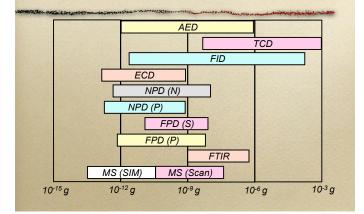

Minimum detectable level (MDL) The amount of sample in which the peak height is 2 or 3 times the noise height.

Dynamic Range. Range where detector gives increasing response with increasing amount (amount/ml carrier gas.)

Linear Dynamic Range.

Range when detector gives linear response (amount/ml carrier gas.)




Concentration Linear range.

Linear range of detector will tell you maximum at any given measurement.

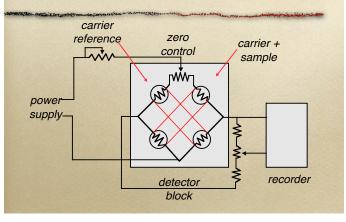
Linear range for analysis will work work with the sum of all measurements -- range is much larger than detector range.

GC detectors sensitivities and ranges

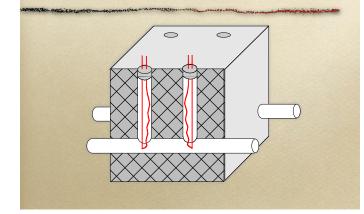
Thermal conductivity detector

- General purpose
- Nondestructive
- Limit of detection ~ 400 pg/ml carrier
- Linear range ~ 10⁶

Mode of detection


Change in resistance of a wire based on variations in the thermal conductivity of the gas evolving from a column.

Representative thermal conductivity values, 100°C


pecies	Thermal conductivity 10 ⁵ cal/cm sec °C
nydrogen	49.93
helium	39.85
nitrogen	7.18
ethane	7.67
water	5.51
benzene	4.14
acetone	3.96
chloroform	2.33

<text><text><text>

Thermal conductivity detector

Thermal conductivity detector

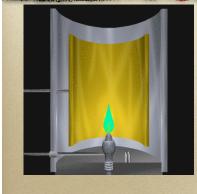
Thermal conductivity detector

Dual channel detectors require both an analytical column and a blank column.

- accounts for response changes due to
 - variations in temperature
 - column bleed

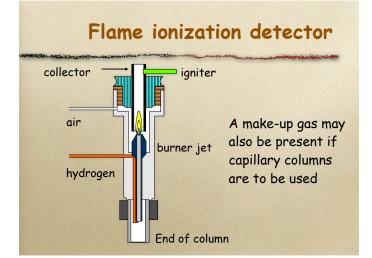
Single channel TCD systems are available that correct for temperature variations.

Flame ionization detector


- · Specific sample must be combustible
- Destructive
- Limit of detection ~ 5 pg carbon / second
- Linear range $\sim 10^7$

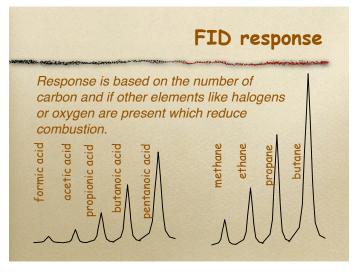
Mode of detection

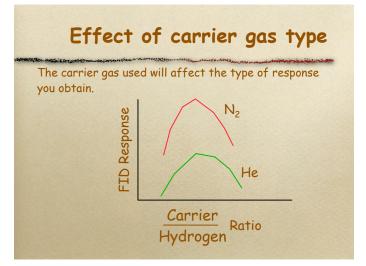
Production of ions in a flame result in a current that can be measured.


A make-up gas may be required to maintain an optimum flow - capillary columns

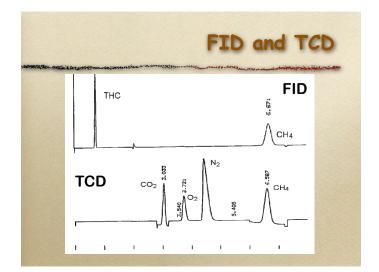
Sample components enter at the base of the detector. They mix with hydrogen and enter the flame.

Ions are produced that can be measured.

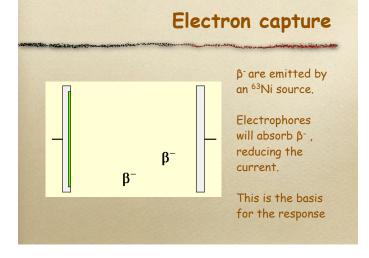


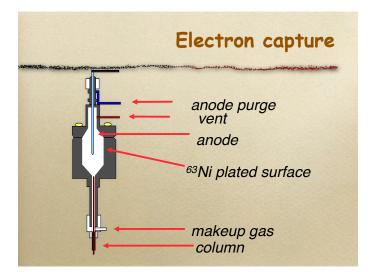

Flame ionization detector

Compounds with little or no FID response


noble gases	NH ₃	CS ₂
NOx	СО	02
H ₂ O	CO2	N ₂

perhalogenated compounds formic acid, formaldehyde

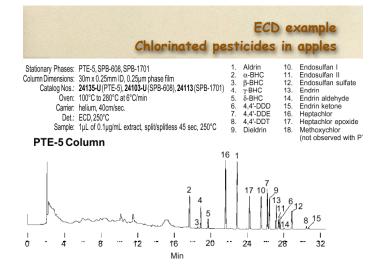


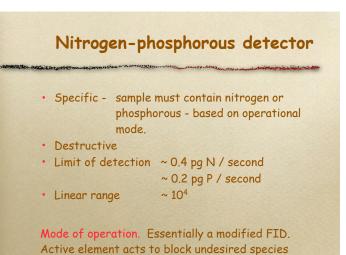

Electron capture

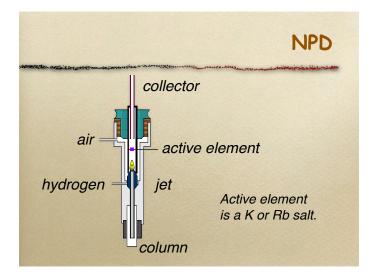
- Specific sample must contain a gas phase electrophore
- Non-destructive
- Limit of detection ~ 0.1 pg Cl / second
- Linear range ~ 10⁴

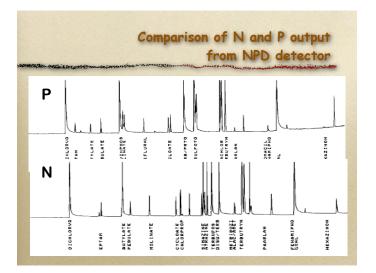
Mode of detection

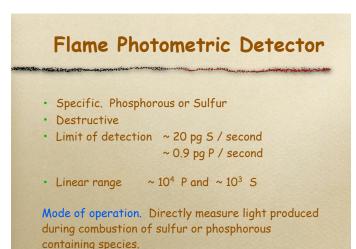
Absorption of β particles by species containing halogens, nitriles, nitrates, conjugated double bonds, organometallics.

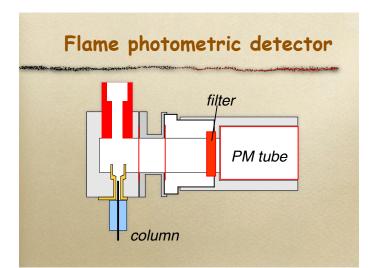

Electron capture detector

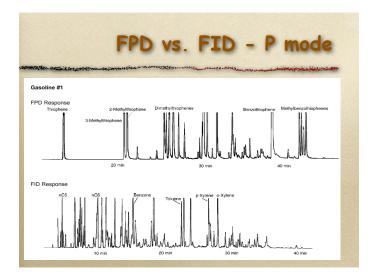

Provides excellent trace analysis of halogenated compounds nitro group compounds eluents with conjugated double bonds

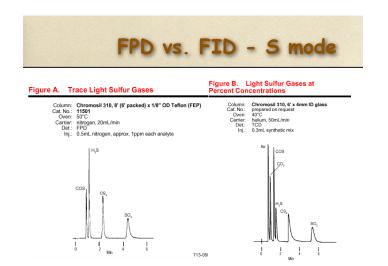

Most common use is environmental analysis of organochlorine pesticides


Major problem - detector is radioactive. Requires regular area testing and must be licensed.

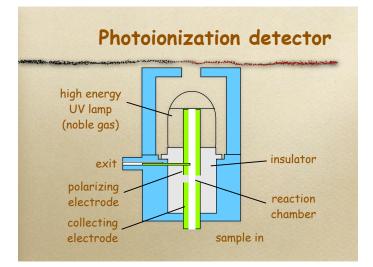

Electron capture detector			
the state of the second s	ر المحالية المراجع المحالية ال والمحالية المحالية الم		
Relative	responses		
10 ⁰	hydrocabons		
10 ¹	esters, ethers		
10 ²	alcohols, ketones, monochlorides, amines		
10 ³	monobromides, dichlorides		
10 ⁴	anhydrides, trichlorides		
10 ⁵ - 10 ⁶	poly halogenated, mono and diiodo		

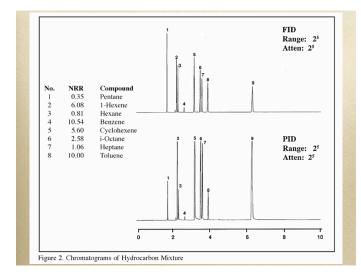


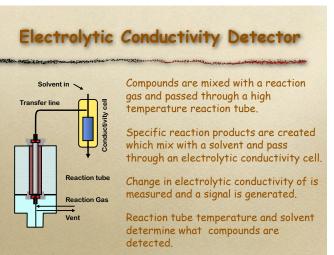


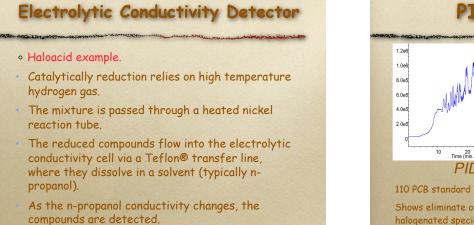


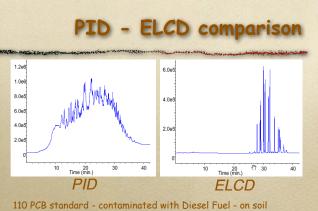












Electrolytic Conductivity Detector					
	detector Halogens, sulfur or nitrogen containing pecies. Only one at a time. Destructive.				
Sensitivity:	5-10 pg (X) 10-20 pg (S) 10-20 pg (N)				
Linear range:	10 ⁵ -10 ⁶ (X) 10 ⁴ -10 ⁵ (N) 10 ³ -10 ⁴ (S)				
Reaction Ter	p: 800-1000°C (halogens); 850-925°C (N); 750-825°C (S)				

Shows eliminate of organic contaminate interference to make halogenated species easier to detect.

Halogen Specific Detector (XSD)

- Specific: Halogenated compounds.
- Selectiviy: 10⁴ Cl to hydrocarbon
- Destructive.
- Limit of detection: <1 pg Cl / second
- Linear range > 10⁴

Mode of operation. Compounds are oxidatively pyrolyzed at 900-1100 °C - forming free halogen atoms. Atoms are then collected on cathode, forming electrons and halogen ions (thermionic emission).

Hyphenated methods

We'll cover these approaches in another unit.

Overall - this approach amounts to attaching a *GC* to a second instrument that will produce qualitative data.

GC - MS GC - FTIR GC - AES