Solution Confirmatory tests of basic radicals :

Precipitates	Confirmatory Tests			
Group I				
AgCl	Dissolves in NH_4OH , white ppt. of AgCl is again obtained on adding dil. HNO ₃ . Yellow ppt. of AgI is formed on adding KI.			
PbCl ₂	Dissolves in hot water, gives yellow ppt. of PbCrO ₄ with K ₂ CrO ₄ and yellow ppt. of PbI ₂ with KI.			
Hg ₂ Cl ₂	Turns black with NH ₄ OH. Black residue {Hg + Hg(NH ₂)Cl} dissolves in aquaregia forming mercuric chloride (HgCl ₂). On addition of stannous chloride solution to HgCl ₂ white ppt (Hg ₂ Cl ₂) is formed which turns grey (Hg).			
Group II A	Precipitates do not dissolve in yellow ammonium sulphide.			
HgS	Dissolves in aquaregia, grey ppt. of Hg is obtained with SnCl ₂ or Cu turnings.			
PbS	Dissolves in dil. HNO ₃ , white ppt. of PbSO ₄ is obtained on adding dil. H ₂ SO ₄ .			
Bi ₂ S ₃	Dissolves in dil. HCl, white ppt. of BiOCl is obtained on adding excess of water. Black ppt. of B is obtained on adding Na ₂ SnO ₂ solution.			
CuS	Blue coloured solution is obtained on adding dil. HNO ₃ and excess of NH ₄ OH which give chocolate brown ppt. of $Cu_2[Fe(CN)_6]$ with $K_4[Fe(CN)_6]$.			
CdS	Colourless solution is obtained on adding dil. HNO ₃ and excess of NH ₄ OH, which gives yellow ppt. of CdS again on adding H ₂ S.			
Group II B	Precipitates dissolve in yellow ammonium sulphide.			
As ₂ S ₃	Insoluble sulphide, As_2S_5 is obtained by treating with conc. HCl, which gives yellow ppt. o ammonium arsenomolybdate on adding conc. HNO ₃ and heating with ammonium molybdate			
SnS ₂ or SnS	Filtrate of sulphide in conc. HCl is reduced to $SnCl_2$ by treating with Fe or Zn which on adding HgCl ₂ solution initially gives white ppt. of Hg ₂ Cl ₂ and finally turns to grey Hg.			
Sb ₂ S ₃	Filtrate of sulphide in conc. HCl gives white ppt. of SbOCl on adding excess of water and orange ppt. of Sb ₂ S ₃ on passing H ₂ S gas.			
Group III				
Fe(OH) ₃	Dissolves in dil. HCl, gives prussian blue solution or ppt. of $Fe_4[Fe(CN)_6]_3$ on adding $K_4[Fe(CN)_6]_3$ and blood red coloured $Fe(CNS)_3$ on adding KCNS.			
Cr(OH) ₃	The solution obtained on heating precipitate with NaOH and Br_2 water contains Na_2CrO_4 which gives yellow ppt. of PbCrO ₄ on treating with acidified lead acetate solution.			
Al(OH) ₃	Dissolves in NaOH and is again precipitated out on boiling with NH ₄ Cl.			
Group IV	Soluble in conc. HCl.			
ZnS	Solution $(ZnCl_2)$ is treated with NaOH, a white ppt. of $Zn(OH)_2$ appears which dissolves in excess of NaOH and on passing H ₂ S, white ppt. of ZnS is obtained.			
MnS	Precipitate of MnO_2 is obtained on heating the solution with NaOH and Br_2 water. HMnO imparts pink colour to the supernatant liquid on treating the ppt. with excess of HNO ₃ and red lead (Pb ₃ O ₄).			
Group IV	Insoluble in conc. HCl			
CoS	Dissolves in aqua-regia. Yellow ppt. of potassium cobaltinitrite $K_3[Co(NO_2)_6]$ is obtained or adding CH ₃ COOH (in excess) and KNO ₂ .			
NiS	Dissolves in aqua-regia. Red ppt. of Ni-dmg complex is obtained on adding NH_4OH in excess and dimethyl glyoxime.			

TITRATION

One of the important methods in quantitative analysis is volumetric analysis, a commonly used laboratory technique. It is used to determine the unknown concentration of a sample by measuring its volume.

ACID BASE TITRATION

It is a method used to determine the strength of an acid or alkali and this type of titration is based on the neutralisation reaction. $AH + BOH \rightarrow AB + H_2O$

(Acid) (Base) (Salt)

NDICATOR

An indicator is a chemical substance that undergoes a colour change at the end point. The end point of an acid-base titration can be determined using acid-base indicators. Acid base indicators are either weak organic acids or weak organic bases. The colour change of an indicator depends on the pH of the medium. The un-ionized form of an indicator $\begin{array}{c} \text{HPh} + \text{H}_2\text{O} \longrightarrow \text{H}_3\text{O}^+ + \text{Ph}^-\\ \text{Colourless} & \text{Pink} \end{array}$

Some common examples of acid-base indicators :

Indicators	pH Range	Acid	Base
Phenolphthalein	8.0 - 10.0	Colourless	Pink
Methyl orange	3.1 - 4.4	Red	Orange
Methyl red	4.4 - 6.2	Red	Yellow
Phenol red	6.4 - 8.0	Yellow	Red
Thymol blue	1.2 - 2.8	Red	Yellow
Thymol blue	8.0 - 9.6	Yellow	Blue
Methyl yellow	2.9 - 4.0	Red	Yellow

TITRIMETRIC CALCULATIONS

- Strength of a solution : It is the amount of solute in grams present per litre of the solution.
 - > Strength $(g/L) = Normality \times Eq.$ wt.
 - > Strength $(g/L) = Molarity \times Mol.$ mass
- **Normality equation :** $N_1V_1 = N_2V_2$

has one colour, but its ionized form has a different colour.

For example, consider the indicator phenolphthalein, whose ionization can be written as :

- (Solution 1) (Solution 2)
- Molarity equation : $M_1V_1n_1 = M_2V_2n_2$ (Solution 1) (Solution 2)

[:: $N = M \times n$, where n = valency factor]

ATTENTION COACHING INSTITUTES: a great offer from MTG

MTG offers "Classroom JEE (Main & Advanced), NEET and FOUNDATION MATERIAL for Class 7, 8, 9, 10, 11 & 12 with YOUR BRAND NAME & COVER DESIGN.

This study material will save you lots of money spent on teachers, typing, proof-reading and printing. Also, you will save enormous time. Normally, a good study material takes 2 years to develop. But you can have the material printed with your logo delivered at your doorstep.

Profit from associating with MTG Brand – the most popular name in educational publishing for JEE (Main & Advanced)/NEET/PMT....

Order sample chapters on Phone/Fax/e-mail.

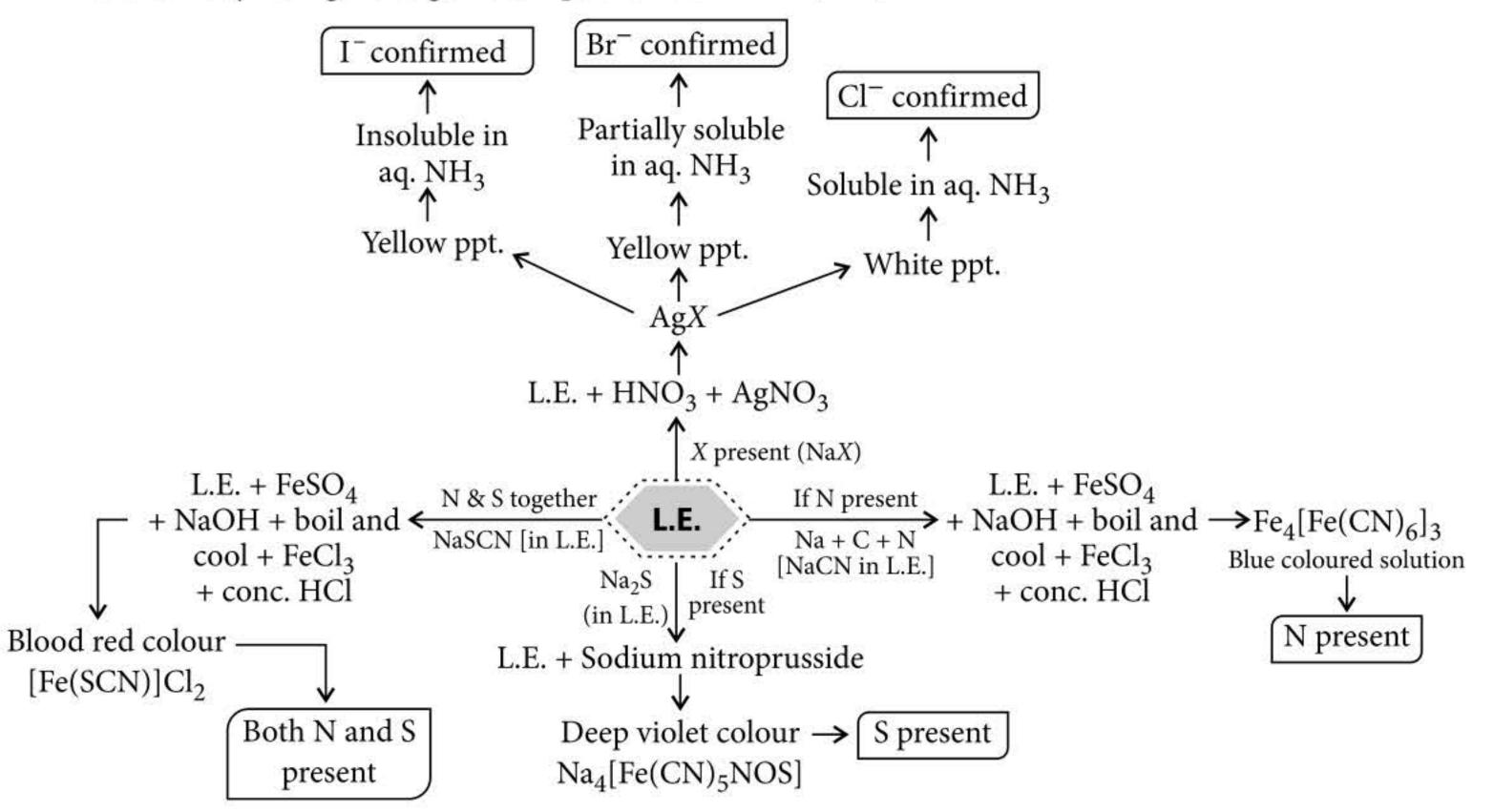
Phone : 0124-6601200 09312680856 e-mail : sales@mtg.in | www.mtg.in

CLASSROOM STUDY MATERIAL

Group V	Soluble in acetic acid.		
BaCO ₃	Yellow ppt. of BaCrO ₄ is obtained on adding K_2CrO_4 to solution.		
SrCO ₃	White ppt. of $SrSO_4$ is obtained on adding $(NH_4)_2SO_4$ to solution.		
CaCO ₃	White ppt. of CaC_2O_4 is obtained on adding $(NH_4)_2C_2O_4$ to solution.		
Group VI			
Mg ²⁺	White ppt. of Mg(NH ₄)PO ₄ is formed on adding Na ₂ HPO ₄ and NH ₄ OH to solution.		
Zero			
$\rm NH_4^+$	Salt evolves NH_3 gas on heating with NaOH which gives dense white fumes of NH_4Cl with HCl and a brown ppt. of $H_2N\cdot HgO\cdot HgI$ on adding Nessler's reagent, K_2HgI_4 .		

DETECTION OF N, S, CI IN ORGANIC COMPOUNDS

LASSAIGNE'S TEST


 \checkmark It is a general test for the detection of halogen, nitrogen and sulphur in organic compounds. These elements are covalently bonded to the organic compounds. In order to detect them, these have to be converted into their ionic forms.

sodium metal. The ionic compounds formed during the fusion are extracted in aqueous solution and can be detected by simple chemical tests.

B Lassaigne's extract : A small pellet of metallic sodium together with a little amount of the substance is heated to red hot in an ignition tube. It is then suddenly plunged into about 10 mL of distilled water in a China dish. The mixture is boiled well and filtred. Filtrate is known as Lassaigne's extract

This is done by fusing the organic compound with

(L.E.).

B When sodium fusion is carried out with excess of sodium, thiocyanate decomposes to cyanide and sulphide ions which give their usual tests. Thus, we do not get blood red colour with ferric chloride even though N and S both are present.

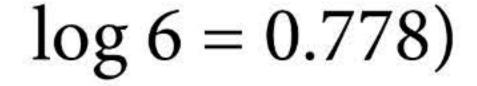
 $Na + C + N + S \rightarrow NaCNS$ Sodium thiocyanate $NaCNS + 2Na \rightarrow NaCN + Na_2S$

B Lassaigne's test fails in case of compounds which contain nitrogen but no carbon e.g., hydrazine (NH_2NH_2) and hydroxylamine (NH_2OH) .

(VII) Use og talle if ne e sa y, u seo f ca cula ors is not a lowed.

- **1.** What is an adsorption isotherm?
- Write down the electronic configuration of gadolinium 2. (Gd). (At. number : Gd = 64)
- **3.** Write the structure of the compound : 4-*tert*-butyl-3-iodoheptane
- 4. What happens when ferrimagnetic Fe_3O_4 is heated at 850 K and why?
- Write the equation involved in the acetylation of salicylic 5. acid.
- 6. $[Fe(CN)_6]^{4-}$ and $[Fe(H_2O)_6]^{2+}$ are of different colours in

dilute solutions. Why?


OR

Discuss the nature of bonding in metal carbonyls.

7. Knowing the electron gain enthalpy values for $O \rightarrow O^{-1}$ and $O \rightarrow O^{2-1}$ as -141 and 702 kJ mol⁻¹ respectively, how can you account for the formation of large number of oxides having O^{2-} species and not O^{-} ?

8. Calculate the mass of ascorbic acid (vitamin C, $C_6H_8O_6$) to be dissolved in 75 g acetic acid to lower its freezing point by 1.5°C. ($K_f = 3.9 \text{ K kg mol}^{-1}$)

9. A first order reaction has a specific reaction rate of 10^{-3} sec⁻¹. How much time will it take for 10 g of the reactant to reduce to 2.5 g? (Given : $\log 2 = 0.301$, $\log 4 = 0.6021$,

