CONCEPT **CLASS XI**

Le Chatelier's Principle

If a system in dynamic equilibrium is disturbed, the position of equilibrium will shift so as to cancel out the effect of change and a new equilibrium can be established again.

Effect of Concentration Change

- Increase in conc. of reactants or decrease in conc. of products shifts the equilibrium to forward direction.
- Increase in conc. of products or decrease in conc. of reactants shifts the equilibrium to backward direction.

$$\begin{array}{c} 2\text{CrO}_4^{2^-} + 2\text{H}^+ \leftrightarrow \text{Cr}_2\text{O}_7^{2^-} + \text{H}_2\text{O} \\ \text{(yellow)} & \text{(orange)} \end{array}$$

Increase H⁺ conc.

- By adding H⁺
- Equilibrium shift towards right.
- Formation of Cr₂O₇²⁻ (orange)

Decrease H⁺ conc.

- By adding OH⁻
- Equilibrium shift towards left.
- Formation of CrO₄²⁻ (yellow)

Effect of Pressure Change

- Applicable only in case of gaseous reactions and reactions which proceed with a change in number of moles of gaseous reactants and products.
- Increase in pressure shifts the equilibrium towards lesser number of gaseous molecules.
- Decrease in pressure shifts the equilibrium towards larger number of gaseous molecules.

Pressure-volume changes do not change the value of equilibrium constant as long as the temperature remains constant.

Effect of Volume Change

- The effect of change of volume will be exactly reverse to that of pressure.
- Decrease in volume shifts the equilibrium towards lesser number of gaseous molecules.
- Increase in volume shifts the equilibrium towards larger number of gaseous molecules.

Effect of Catalyst

- Catalyst has no effect on equilibrium, it simply helps to achieve the equilibrium quickly.
- Position of equilibrium and K_C unchanged.
- Provides an alternative pathway with lower activation energy.
- Increases forward and reverse rates to the same extent.
- Catalyst shortens the time to reach equilibrium.

Effect of Temperature Change

 Endothermic reaction is favoured with ↑ increase in temperature.

 Exothermic reaction is favoured with decrease in temperature.

Effect of Inert Gas Addition

- Addition of an inert gas at constant volume has no effect on equilibrium.
- Addition of an inert gas at constant pressure will shift the equilibrium towards larger number of gaseous molecules.

Condition		Effect
$\Delta V = 0$, $V = Constant$	$\Delta n = 0$, +ve or -ve	No effect
At constant pressure	$\Delta n = 0$	No effect
	$\Delta n > 0$	Forward shift
	$\Delta n < 0$	Backward shift