ALCOHOLS, PHENOLS AND ETHERS

ALCOHOLS

• Alcohols are the hydroxyl derivatives of alkanes having general formula, $C_nH_{2n+1}OH$.

Nomenclature

- In common system, alcohols are named as alkyl alcohol.
- According to IUPAC system, alcohols are called 'alkanols', by replacing '-e' of alkane by '-ol'.

Compound	Common name	IUPAC name
$CH_3 - CH_2 - CH_2 - CH_2 - OH$	n-Butyl alcohol	Butan-1-ol
CH ₃ -CH-CH ₂ -CH ₃ OH	sec-Butyl alcohol	Butan-2-ol
CH ₃ -CH-CH ₂ -OH CH ₃	Iso-butyl alcohol	2-Methylpropan-1-ol
CH ₃ CH ₃ -C-OH CH ₃	tert-Butyl alcohol	2-Methylpropan-2-ol
CH ₂ -CH-CH ₂ OH OH OH	Glycerol	Propane -1, 2, 3-triol

PREPARATION

From alkyl halides:

From alkenes :

H C=C H (i)
$$B_2H_6$$
 in THF (ii) H_2O_2 , OH^- (ii) H_2O_2 , OH^- (ii) H_3OH_2 (ii) H_3OH_2 (ii) H_3OH_3 (ii) H_3OH_4 (ii) H_3OH_4 (ii) H_3OH_4 (iii) H_3O

• From amines:

$$RNH_2 \xrightarrow{NaNO_2/dil. HCl} ROH + N_2 + H_2O$$
1° Amine

• From ethers:

$$ROR \xrightarrow{H_2O/\text{dil. H}_2SO_4} 2ROH$$
Ether
$$CH_2 - CH_2 \xrightarrow{\text{(i) } RMgX/\text{Dry ether}} RCH_2CH_2OH$$
Oxirane
$$O$$
Oxirane
$$ROR \xrightarrow{H_2O/\text{dil. H}_2SO_4} 2ROH$$

$$CH_2 - CH_2 \xrightarrow{\text{(ii) } H_2O/\text{H}^+} RCH_2CH_2OH$$

$$Oxirane$$

• From carbonyl compounds:

From acids and their derivatives :

$$\begin{array}{c} RCOOH \\ Carboxylic acid \end{array} \xrightarrow{\begin{array}{c} \text{(i) LiAlH}_4 \text{ or } B_2H_6/\text{ether} \\ \text{(ii) } H_3O^+ \end{array}} RCH_2OH \\ \hline RCOOR \\ \hline RCOOR \\ \hline \\ RCOOR \\ \hline \\ Ester \end{array} \xrightarrow{\begin{array}{c} H_2O/H^+ \text{ or } OH^- \\ \text{Aq. NaOH} \end{array}} RCOOH + ROH \\ \hline \\ (Saponification) \\ \hline \\ (Saponification) \\ RCOONa + ROH \\ \hline \\ LiAlH_4 \text{ or } \\ \hline \\ Na/C_2H_5OH \\ \end{array} \xrightarrow{\begin{array}{c} LiAlH_4 \text{ or } \\ \text{Na/C}_2H_5OH \\ \end{array}} RCH_2OH + ROH \\ \hline \\ (RCO)_2O \\ \hline \\ Acid anhydride \end{array} \xrightarrow{\begin{array}{c} LiAlH_4 \\ \text{ether} \end{array}} 2RCH_2OH \\ \hline \\ RCOCl \\ \hline \\ Acid chloride \end{array} \xrightarrow{\begin{array}{c} LiAlH_4 \\ \text{ether} \end{array}} RCH_2OH + HCl$$

PHYSICAL PROPERTIES

- Lower alcohols are liquid at room temperature while higher ones are solid.
- Solubility in water decreases with increase in molecular mass due to decrease in extent of intermolecular hydrogen bonding.
- Alcohols have high boiling points. Order of boiling point : 1° alcohols > 2° alcohols > 3° alcohols

CHEMICAL PROPERTIES

- The hydroxyl group present in alcohols is a very reactive group. The reactions of the hydroxyl group consists of either cleavage of C-O bond or the cleavage of O — H bond as both are highly polarised with negative end of the dipoles at oxygen.
- In O H cleavage, the order of reactivity: Primary > Secondary > Tertiary
- In C O cleavage, the order of reactivity: Tertiary > Secondary > Primary

Na
$$\rightarrow$$
 RONa + H₂

RCOOH \rightarrow RCOOR + H₂O

RCOCI \rightarrow RCOOR + HCI

Base \rightarrow RCOOR + RCOOH

C \rightarrow R'MgX \rightarrow R'H + Mg(OR)X

 \rightarrow RX + H₂O

 \rightarrow RCI + POCl₃ + HCI

Conc. H₂SO₄ \rightarrow RCH=CH₂ + H₂O

O \rightarrow RX \rightarrow ROR + H₂O

Conc. H₂SO₄ \rightarrow ROR + H₂O

 \rightarrow ROOF \rightarrow ROOH

Core. H₂SO₄ \rightarrow ROR + H₂O

 \rightarrow ROOH

Core. H₂SO₄ \rightarrow ROOH

Core.

Dehydration of alcohols:

$$C_2H_5OH \xrightarrow{Conc. H_2SO_4} CH_2 = CH_2 + H_2O$$

Mechanism:

Formation of carbocation

- The order of stability of carbocations : $3^{\circ} > 2^{\circ} > 1^{\circ}$
- It always occurs in accordance with the Saytzeff rule i.e., the more substituted alkene is the major product.

Distinction between 1°, 2° and 3° Alcohols

- Lucas test: Alcohols + ZnCl₂ + HCl
 - ightharpoonup 1° Alcohol: $RCH_2OH + ZnCl_2 + HCl \rightarrow$ No reaction at room temperature
 - $ightharpoonup 2^{\circ}$ Alcohol: R_2 CHOH + ZnCl₂ \longrightarrow R_2 CHCl; White turbidity appeared after 5-10 min.
 - ≥ 3° Alcohol: R_3 COH + ZnCl₂ + HCl $\longrightarrow R_3$ CCl; White turbidity appeared immediately.
- **Victor Meyer test:**
 - ▶ 1° Alcohol :

$$\begin{array}{c} R\text{CH}_2\text{OH} \xrightarrow{\text{P/I}_2} R\text{CH}_2\text{I} \xrightarrow{\text{AgNO}_2} R\text{CH}_2\text{NO}_2 \\ R - C - \text{NO}_2 & \text{HNO}_2 \\ \hline & \text{NOH} \\ \text{(Nitrolic acid)} \end{array}$$

Nitrolic acid on treatment with alkali gives blood red colouration.

2° Alcohol :

$$\begin{array}{c}
R > \text{CHOH} \xrightarrow{P/I_2} R > \text{CHI} \xrightarrow{AgNO_2} \\
R > C - NO_2 & \xrightarrow{HNO_2} R > \text{CHNO}_2 \\
N = O \\
(Pseudonitrol)
\end{array}$$

Pseudonitrol on treatment with alkali gives blue colouration.

> 3° Alcohol:

$$R_3C - OH \xrightarrow{P/I_2} R_3C - I \xrightarrow{AgNO_2} R_3C - NO_2$$

$$\downarrow HNO_2$$

No reaction

PHENOLS

 Phenols are derivatives of benzene in which a ring hydrogen is replaced by —OH group.

PREPARATION

Hydrolysis of chlorobenzene (Dow's process) :

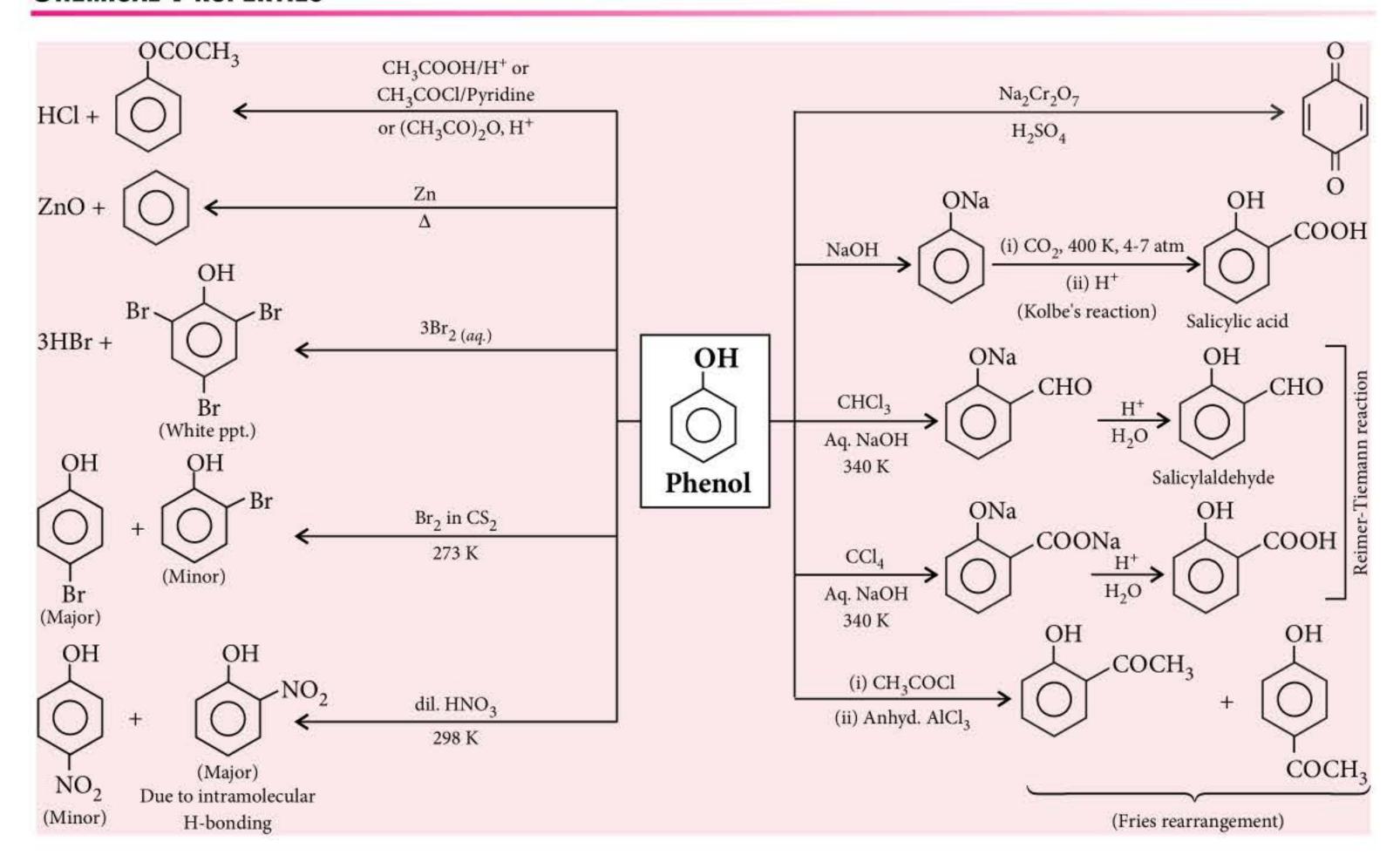
$$\begin{array}{c|c}
Cl & NaOH \\
\hline
350^{\circ}C, 300 \text{ atm}
\end{array}$$

$$\begin{array}{c}
ONa \\
H^{+}
\end{array}$$

• From benzene sulphonic acid (alkali fusion of sodium benzene sulfonate):

$$\begin{array}{c|c}
SO_3H & ONa & ONa \\
\hline
360°C & ONa & ONa
\end{array}$$

From cumene hydroperoxide :


$$\begin{array}{c} & \begin{array}{c} & \text{AlCl}_3, \\ & \begin{array}{c} \text{CH} \end{array} \end{array} \\ + \text{CH}_2 = \text{CH} - \text{CH}_3 \\ \hline & \begin{array}{c} \text{260°C} \\ \text{H}_3 \text{PO}_4 \end{array} \end{array} \\ & \begin{array}{c} \text{CH} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array} \\ \end{array}$$

PHYSICAL PROPERTIES

- Phenol is a colourless, crystalline, deliquescent solid, attains pink colour on exposure to air and light.
- Its melting point is 315 K and boiling point 455 K. The boiling point of phenol is much higher than the corresponding aromatic hydrocarbons and the haloarenes.
- It is soluble in water due to inter-molecular H-bonding among themselves and with water.
- It is poisonous in nature but acts as antiseptic and disinfectant.

CHEMICAL PROPERTIES

Test for phenols:

Ferric chloride test : Phenol gives violet colour with neutral FeCl₃ solution.

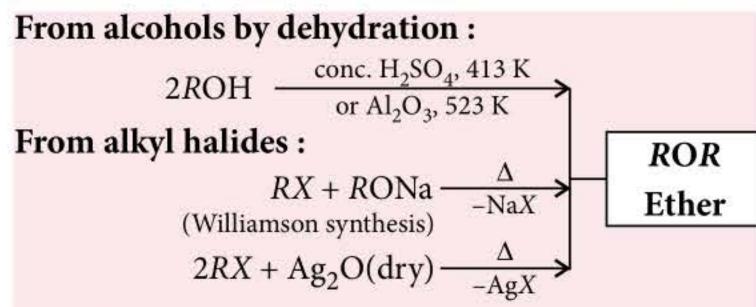
OH

$$6 \longrightarrow + \text{FeCl}_3 \longrightarrow 3\text{H}^+ + [\text{Fe(OC}_6\text{H}_5)_6]^{3-} + 3\text{HCl}$$

(violet complex)

Bromine water test: Phenol gives white ppt. with Br₂-water due to the formation of 2, 4, 6-tribromophenol.

OH OH Br
$$+ 3Br_2 \xrightarrow{H_2O} Br + 3HBr$$
 (white ppt.)


Acidity of phenol: Phenols are much more acidic than alcohols but less than carboxylic acids or even carbonic acid. This is indicated by the values of ionisation constants (K_a) or pK_a . Smaller the pK_a value, stronger the acid. The relative acidity follows the following order:

K_a (approx.)	pK_a value
(10 ⁻⁵) RCOOH Carboxylic acid	5
(10 ⁻⁷) H ₂ CO ₃ Carbonic acid	7
(10^{-10}) C_6H_5OH Phenol	8-10
(10 ⁻¹⁴) HOH Water	14
(10 ⁻¹⁸) ROH Alcohols	16-18

ETHERS

- General formula: $C_nH_{2n+2}O(R-O-R')$
- Symmetrical ether: When R and R' are same groups. e.g., $CH_3 - O - CH_3$, $C_2H_5 - O - C_2H_5$
- **Unsymmetrical ether:** When *R* and *R'* are different groups. e.g., $CH_3 - O - C_6H_5$, $CH_3 - O - C_2H_5$

PREPARATION

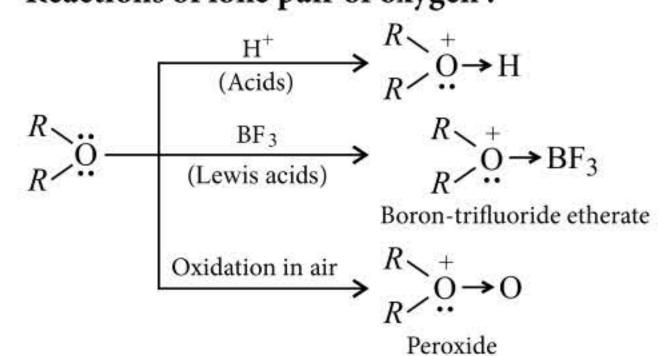
From Grignard reagent:

$$ROCH_2X + R'MgX \xrightarrow{Dry \text{ ether}} ROCH_2R'$$

From diazomethane:

$$ROH + CH_2N_2 \xrightarrow{HBF_4, \Delta} ROCH_3$$

From alkenes:


$$C = C \left\langle \begin{array}{c} \text{(i) Hg(OAc)}_2, ROH \\ \hline \text{(ii) NaBH}_4, OH \\ \hline \\ RCO_3H \\ \hline \text{or } m\text{-CPBA,} \end{array} - C - C - + RCOOH/PhCOOH \\ \hline \\ Epoxide (Cyclic ether) \end{array} \right.$$

PHYSICAL PROPERTIES

- Ethers have a bent structure and are dipolar in nature.
- Boiling points of ethers show a gradual increase with increase in molecular mass.
- They are lighter than water. Lower ethers are highly volatile and very inflammable.
- They are sparingly soluble in water but readily soluble in organic solvents.
- Dimethyl ether and ethyl methyl ether are gases. All ethers are colourless liquids with characteristic ether smell.

CHEMICAL PROPERTIES

Reactions of lone pair of oxygen:

• Cleavage of R - O - R bond:

$$R > O \xrightarrow{\Delta} 2R - Cl + POCl_3$$

$$R > O \xrightarrow{\text{dil. H}_2SO_4/\Delta} 2ROH$$

$$HX \longrightarrow 2R - X + H_2O$$

$$(excess)$$

$$Cold cone, HI$$

$$R - O - R' - \underbrace{\begin{array}{c} \text{Cold conc. HI} \\ \text{Hot conc. HI} \\ \end{array}}_{\text{Hot conc. HI}} R - O H + R'I$$

Different possibilities of reaction of ether with HI:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{CH}_{3}-\text{O}-\text{CH}-\text{CH}_{3} & \xrightarrow{\text{HI}} \\ \text{Primary} & \text{CH}_{3} \\ \text{Secondary} \end{array} \\ \begin{array}{c} \begin{array}{c} \text{CH}_{3} & \xrightarrow{\text{Secondary}} \\ \text{H} \\ \text{CH}_{3} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} & \text{CH} \\ \text{CH}_{3} & \text{CH}_{3} & \xrightarrow{\text{CH}} & \text{CH} \\ \text{CH}_{3} & \text{CH}_{3} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} \\ \text{CH}_{3} & \text{CH}_{3} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} \\ \text{CH}_{3} & \text{CH}_{3} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} \\ \text{CH}_{3} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} \\ \text{CH}_{3} & \xrightarrow{\text{CH}} & \xrightarrow{\text{CH}} \end{array} \\ \begin{array}{c} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} & \xrightarrow{\text{CH}} \end{array} \\ \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} & \xrightarrow{\text{CH}} \end{array} \\ \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} & \xrightarrow{\text{CH}} \end{array} \\ \end{array}$$

O-CH₃

$$S_{N^2}$$
 $CH_3I + OH$
 $Conc. HI$
 $CH_3I + OH$

 Electrophilic substitution reactions of aromatic ethers:

USES

- Diethyl ether is used as solvent for oils, fats, waxes, plastics and lacquers.
- Provide inert medium for reactions.
- Used in surgery as an anaesthetic.
- Used in perfumery and in the manufacture of smokeless powder.

A bioinspired ortho-sulfiliminyl phenol synthesis!

A variety of synthetic methods have been developed to construct the *ortho*-functionalized phenols which are highly useful in chemical industry, functional materials and medicines. These methods mainly include three kind of strategies (a) rearrangement of aromatic O—X bonds (b) directing group-assisted *ortho* C—H hydroxylation of arenes and (c) *ortho* C—H functionalization of phenols.