ESSENTIAL CONCEPTS OF PHYSICAL CHEMISTRY

Get well-prepared for exams with quick revision of important concepts of physical chemistry.

Solid State

Packing efficiency $= \frac{\text{Volume occupied by two spheres in the unit cell}}{\text{Total volume of the unit cell}} \times 100$

- Mass of the atoms of unit cell = Number of atoms in a unit cell (Z) \times Mass of atom ($M_{
 m atom}$)
- Mass of one atom = $\frac{\text{Molar mass }(M)}{\text{Avogadro's constant }(N_A)}$
- Density (ρ) of unit cell of a cubic crystal = $\frac{ZM}{V \times N_A} = \frac{ZM}{a^3 N_A}$
- Bragg's equation: $2d \sin \theta = n\lambda$
- Number of octahedral voids = No. of particles present in the close packing
- Number of tetrahedral voids = $2 \times No$. of octahedral voids

Characteristics of Different Types of Unit Cells

Crystal	No. of atom(s)/ unit cell	Packing efficiency	C.No.	Relation in d, a and r
scc	1	52.4%	6	r = d/2 = a/2
bcc	2	68%	8	$r = d/2 = \sqrt{3}a/4$
fcc	4	74%	12	$r = d/2 = a/2\sqrt{2}$

Void	Radius Ratio
Triangular	$0.155 \le r^+/r^- < 0.225$
Tetrahedral	$0.225 \le r^+/r^- < 0.414$
Octahedral	$0.414 \le r^+/r^- < 0.732$
Body-centred cubic	$0.732 \le r^+/r^- < 1$

Solids on the Basis of Electrical Properties

- Conductors: Electrical conductivity, 10⁴ to 10⁷ ohm⁻¹ m⁻¹
- Insulators: Electrical conductivity, 10⁻²⁰ to 10⁻¹⁰ ohm⁻¹ m⁻¹
- Semiconductors: Electrical conductivity, 10⁻⁶ to 10⁴ ohm⁻¹ m⁻¹
 - n-type semiconductors: Group 14 elements doped with group 15 elements, free electrons increase conductivity.
 - p-type semiconductors: Group 14 elements doped with group 13 elements, holes increase conductivity.

Solutions

• Molality
$$(m) = \frac{M}{\rho - \frac{MM_2}{1000}}$$
 • Molarity $(M) = \frac{n_1}{(n_1 M_1 + n_2 M_2)/\rho}$

- **Henry's law**: $p_A = K_H \cdot x_A : K_H$ increases with increase of temperature implying that solubility decreases with increase of temperature at the same pressure.
- **Raoult's law**: $p_1 = p_1^{\circ} x_1$, this law is applicable only if the two components form a homogeneous mixture.
- **Dalton's law of partial pressure**: $p_{\text{total}} = p_1 + p_2 + ... p_n$ and for two components system, $p_{\text{total}} = p_1^\circ + (p_2^\circ p_1^\circ)x_2$

Ideal and Non-ideal Solutions

Ideal Solutions	Non-ideal Solutions
$p_1 = x_1 p_1^{\circ}; p_2 = x_2 p_2^{\circ}$	$p_1 \neq x_1 p_1^{\circ}; p_2 \neq x_2 p_2^{\circ}$
$\Delta H_{\text{mix}} = 0$, $\Delta V_{\text{mix}} = 0$	$\Delta H_{\text{mix}} \neq 0, \Delta V_{\text{mix}} \neq 0$
$A - B$ interactions $\approx A - A$	$A - B$ interactions $\neq A - A$
and $B - B$ interactions.	and $B - B$ interactions.

Non-ideal Solutions Showing Positive and Negative Deviations from Raoult's Law

Solutions showing positive deviation	Solutions showing negative deviation
$A - B \ll A - A \text{ or } B - B$	A - B >> A - A or B - B
interactions.	interactions.
$\Delta H_{\rm mix} > 0$, $\Delta V_{\rm mix} > 0$	$\Delta H_{\rm mix} < 0$, $\Delta V_{\rm mix} < 0$
$p_1 > p_1^{\circ} x_1$	$p_1 < p_1^{\circ} x_1$

Colligative Properties

- Relative lowering of vapour pressure: $(p_A^{\circ} p_A)/p_A^{\circ} = x_B$
- Elevation in boiling point: $\Delta T_b = T_b T_b^{\circ} = K_b m$
- Depression in freezing point: $\Delta T_f = T_f^{\circ} T_f = K_f m$
- Osmotic pressure: $\pi = CRT = (n/V)RT$

van't Hoff Factor and its Significance

- $i = \frac{\text{Observed value of colligative property}}{\text{Calculated value of colligative property}}$
- For association of solute: $nA \rightarrow (A)_n$ Degree of association $(\alpha) = (1-i) n/n - 1$; i < 1
- For dissociation of solute: $(A)_n \rightarrow nA$ Degree of dissociation $(\alpha) = i - 1/n - 1; i > 1$
- Modified colligative properties: $p_A^{\circ} - p_A / p_A^{\circ} = ix_B; \Delta T_b = iK_b m; \Delta T_f = iK_f m; \pi = iCRT$