

HALOGEN DERIVATIVES

The substitution of chlorine atoms into a molecule of alkane results in a compound with anaesthetic properties *e.g.*, chloroform. Increasing the number of chlorine atoms in the compounds increases the depth of anaesthesia given but also increases toxicity. C–F bonds are very stable so their presence leads to non-flammable and unreactive properties. Organofluorine compounds find diverse applications from oil to water repellents to pharmaceuticals, refrigerants and reagents in catalysts.

When C-X carbon is sp^3 hybridised.

Halogen Derivatives

When C-X carbon is sp^2 hybridised.

Alkyl

 $C_nH_{2n+1}X$ e.g., $CH_3CH_2CH_2Cl$

Benzylic

 $C_6H_5CH_2X$ CH_3 e.g., CHC1

Vinylic

C=C-Xe.g., $CH_2=CH-Cl$

Aryl

Halogen is directly attached to the carbon atom of aromatic ring, e.g., C₆H₅Cl

Methods of Preparation

(i) Direct halogenation of alkanes:

Free radical mechanism : $R - H + X_2 \xrightarrow{h\nu} R - X + HX$

Reactivity order:

Allylic $> 3^{\circ} > 2^{\circ} > 1^{\circ} > CH_4$

(ii) Addition of HX to alkenes:

 $CH_2 = CH_2 + HBr \longrightarrow CH_3CH_2Br$

- Unsymmetrical alkenes follow Markovnikov's rule during electrophilic addition.
- If the addition occurs in presence of peroxide, the product will be opposite to Markovnikov's addition (free radical mechanism).

Reactivity order:

HI>HBr>HCl>HF

(iii) From alcohols:

$$3R$$
—OH + PX₃ \rightarrow $3R$ — X + H₃PO₃
 R —OH + HX— \rightarrow R — X + H₂O
 R —OH + SOCl₂— \rightarrow

 $RCl + SO_2 \uparrow + HCl \uparrow$ [Darzen's method]

(iv) Hunsdiecker reaction:

$$RCOOAg + Br_2 \xrightarrow{CCl_4} reflux$$

R—Br + CO₂ + AgBr

(v) Finkelstein reaction:

 $R - X + \text{NaI} \xrightarrow{\text{Dry acetone}} R - \text{I} + \text{Na}X$

Uses of Some Commercially Important Halogen Derivatives

(i) Chloroform (CHCl₃):

- Earlier it was used as anaesthetic but due to its harmful effects it is no longer used for the purpose.
- Used for preparation of chloretone and chloropicrin.
- Used as a solvent for fats, waxes, rubber, resins, etc.

(ii) Iodoform (CHI₃):

- Used as disinfectant.
- Effective as chemical antiseptic.

(iii) Freons or chlorofluorocarbons:

- Used as refrigerants.
- Used as propellant in aerosols such as body spray, hair spray, cleansers, etc.

(iv) DDT:

- Used as a powerful insecticide.
- Effective against Anopheles mosquitoes which spread malaria.

(v) Teflon $(-CF_2-CF_2-)_n$:

- Used as non-stick coating for pans and other cookwares.
- Used in containers and pipework for corrosive chemicals.

(i) Reduction:

$$R-X+2[H] \xrightarrow{\text{Ni or Pd}} R-H+HX$$

(ii) Wurtz reaction:

$$2R-X+2Na \xrightarrow{\text{Dry ether}} R-R+2NaX$$

(iii) Reaction with metals:

$$R-X+Mg \xrightarrow{Dry \text{ ether}} R-MgX$$
(Powder) (Grignard reagent)
 $2R-X+2Zn \xrightarrow{Ether} R_2Zn+ZnX_2$
 $4C_2H_5Br+4Pb/Na \xrightarrow{Dry \text{ ether}} (C_2H_5)_4Pb$
sod. lead alloy Tetraethyl lead

+4NaBr+3Pb

(iv) Corey-House reaction:

 R_2 CuLi + R'X \longrightarrow R — R' + R — Cu + LiX (This reaction can be used to prepare unsymmetrical alkanes.)

(v) Oxidation:

Chemical Properties

Elimination Reactions

Nucleophilic Substitution Reactions

Miscellaneous Reactions

$S_N 1$

- First order kinetics
- Reactivity: $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_3X$

S_N^2

- Second order kinetics
 Peactivity CH V 1º
- Reactivity: $CH_3X > 1^\circ > 2^\circ > 3^\circ$

(i) Dehydrohalogenation:

Elimination follows the Saytzeff's rule.

Ease of dehydrohalogenation:
 Tertiary > Secondary > Primary

(ii) Action of heat:

$$R$$
— $CH_2CH_2X \xrightarrow{573 \text{ K}} R$ — $CH=CH_2$

(I) Hydrolysis with alkalies:

$$RX + AgOH \longrightarrow ROH + AgX$$
(moist)
$$R - X \xrightarrow{aq.} R - OH + KX$$

(ii) Williamson's synthesis:

$$R - X + \text{NaO}R' \xrightarrow{\text{Heat}} ROR' + \text{Na}X$$

(iii) $R - X + \text{KCN} \xrightarrow{\text{alc.}} \text{K}X + RCN \xrightarrow{\text{max}} ROR' + \text{Na}X$

(iv) $R - X + AgCN \xrightarrow{C_2H_5OH/H_2O} R - N \cong C$

