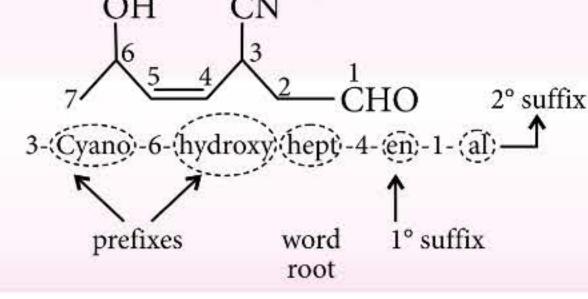


# ESSENTIAL CONCEPTS OF ORGANIC CHEMISTRY


Get well-prepared for exams with quick revision of important concepts of organic chemistry.

 $-CH = CH_2 > -H$ 

# Organic Chemistry - Some Basic Principles and Techniques

#### **IUPAC Nomenclature**

IUPAC name = prefixes + word root + 1° suffix + 2° suffix e.g., OH CN



# Order of Species Showing Inductive Effect

- -I-effect:  $R_3$  $\overset{+}{N}$  -- > -NO<sub>2</sub> > -SO<sub>2</sub>R > -CN > -COOH > -F > -Cl > -Br > -I > -OR > -COR > -OH > -C<sub>6</sub> $H_5$  >
- +I-effect: (CH<sub>3</sub>)<sub>3</sub>C—> (CH<sub>3</sub>)<sub>2</sub>CH—> CH<sub>3</sub>CH<sub>2</sub>—> CH<sub>3</sub>—> —D>—H

# **Order of Species Showing Resonance or Mesomeric Effect**

- +R-effect: —Cl, —Br, —I, —NH<sub>2</sub>, —NHR, —NR<sub>2</sub>, —NHCOR, —OH, —OR, —SR, —SH, —OCH<sub>3</sub>, —OCOR
- -R-effect:  $-NO_2$ , -CN, C=O, -CHO, -COOH, -COOR
- Bond order in compounds which exhibit resonance
- = Total number of bonds between two atoms in all the structures

  Total number of resonating structures

#### Hyperconjugation

Number of hyperconjugating structures  $\infty$  number of  $\alpha$ -hydrogens  $\infty$  stability  $\infty$  1/heat of hydrogenation  $\infty$  polarity  $\infty$  dipole moment  $\infty$  1/bond length

# **Stability of Free Radicals**

- Stability of free radicals  $\propto +I$ -effect  $\propto \frac{1}{-I$ -effect  $\propto +R$ -effect  $\propto \frac{1}{-R}$ -effect
- $Ph_3\dot{C} > Ph_2\dot{C}H > Ph\dot{C}H_2 > Allyl > 3^{\circ} > 2^{\circ} > 1^{\circ} > \dot{C}H_3 > CH_2 = \dot{C}H$

# **Stability of Carbocations**

• Stability of carbocations  $\propto +I$ -effect  $\propto \frac{1}{-I$ -effect  $\propto +R$ -effect  $\propto \frac{1}{-R}$ -effect Ph<sub>3</sub>C > Ph<sub>2</sub>CH > PhCH<sub>2</sub> > Allyl > 3° > 2° > 1° > CH<sub>3</sub>

# **Stability of Carbanions**

• Stability of carbanions  $\propto -I$ -effect  $\propto \frac{1}{+I$ -effect  $\propto -R$ -effect  $\propto \frac{1}{+R$ -effect Ph<sub>3</sub> $\bar{C}$  > Ph<sub>2</sub> $\bar{C}$ H > Ph $\bar{C}$ H<sub>2</sub> > Allyl >  $\bar{C}$ H<sub>3</sub> > 1° > 2° > 3°

# **Stability of Carbene**

Triplet > Singlet

# **Thin Layer Chromatography**

Retention factor  $(R_f)$ 

 $= \frac{\text{Distance travelled by the compound from base line } (x)}{\text{Distance travelled by the solvent from base line } (y)}$ 

(Liebig's

method)

combustion

(Dumas

method)

(Kjeldahl's

method)

(Carius

method)

(Ignition

method)

(Iodine

method)

### **Quantitative Analysis**

- % of C =  $\frac{12}{44} \times \frac{\text{mass of CO}_2 \text{ formed}}{\text{mass of compound taken}} \times 100$
- % of H =  $\frac{2}{18} \times \frac{\text{mass of H}_2\text{O formed}}{\text{mass of compound taken}} \times 100$
- % of N =  $\frac{28}{22400} \times \frac{\text{vol. of N}_2 \text{ at STP}}{\text{mass of compound taken}} \times 100$
- % of N =  $\frac{1.4 \times \text{normality of acid} \times \text{vol. of acid used}}{\text{mass of compound taken}}$
- % of N =  $\frac{1.4 \times \text{molarity of acid} \times \text{vol. of acid used}}{\text{mass of compound taken}}$
- % of Cl =  $\frac{35.5}{143.5} \times \frac{\text{mass of AgCl formed}}{\text{mass of compound taken}} \times 100$
- % of Br =  $\frac{80}{188} \times \frac{\text{mass of AgBr formed}}{\text{mass of compound taken}} \times 100$
- % of  $I = \frac{127}{235} \times \frac{\text{mass of AgI formed}}{\text{mass of compound taken}} \times 100$
- % of S =  $\frac{32}{233} \times \frac{\text{mass of BaSO}_4 \text{ formed}}{\text{mass of compound taken}} \times 100$
- % of P =  $\frac{62}{222} \times \frac{\text{mass of Mg}_2\text{P}_2\text{O}_7 \text{ formed}}{\text{mass of compound taken}} \times 100$
- % of O =  $\frac{32}{88} \times \frac{\text{mass of CO}_2 \text{ formed}}{\text{mass of compound taken}} \times 100$
- % of O =  $\frac{5 \times 16}{2 \times 127} \times \frac{\text{mass of I}_2 \text{ formed}}{\text{mass of compound taken}} \times 100$