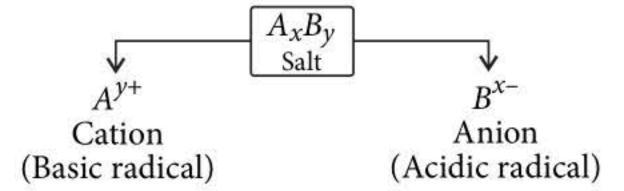
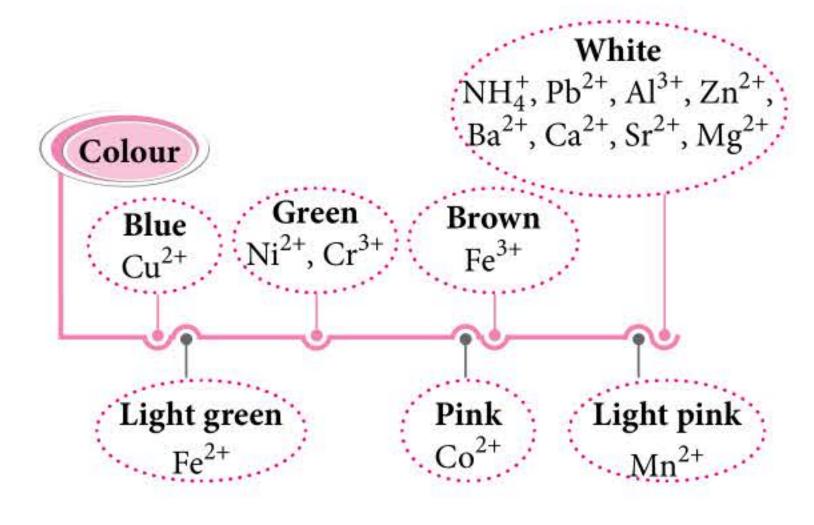
I ESSENTIALS ESSENTIALS

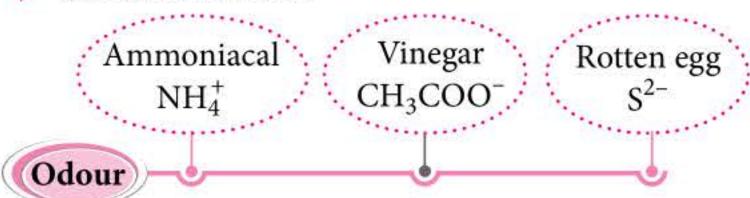
Class


Maximize your chance of success, and high rank in NEET, JEE (Main and Advanced) by reading this column. This specially designed column is updated year after year by a panel of highly qualified teaching experts well-tuned to the requirements of these Entrance Tests.

PRINCIPLES RELATED TO PRACTICAL CHEMISTRY


SALT ANALYSIS

The qualitative salt analysis deals with the identification of acidic radicals (anions) and basic radicals (cations) in an inorganic salt or in a mixture of salts.



PRELIMINARY TESTS

- Note the state (amorphous or crystalline) and colour of the salt.
- Colour of the salt :

Odour of the salt :

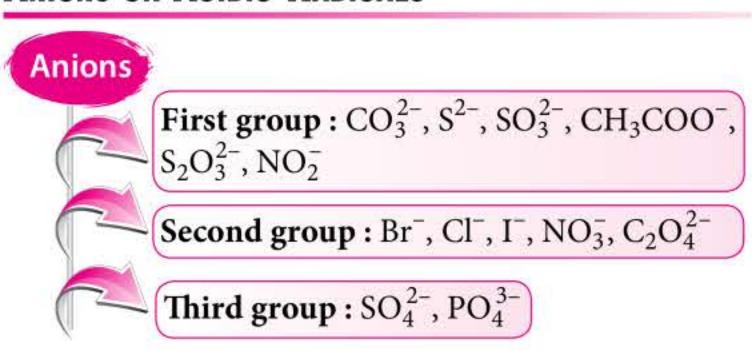
♥ Flame test :

Greenish blue

$$Cu^{2+} \leftarrow \begin{array}{c} \text{Salt with 1-2 drops of} \\ \text{conc. HCl is introduced} \\ \text{in the non-luminous} \\ \text{Golden yellow} \\ \text{Na}^{+} \leftarrow \begin{array}{c} \text{Golden the Bunsen burner} \\ \text{of the Bunsen burner} \\ \text{using platinum wire.} \end{array} \xrightarrow{\text{Brick red} \\ \text{red} \rightarrow \text{Ca}^{2+} \\ \text{Apple green} \rightarrow \text{Ba}^{2+} \\ \text{Crimson red} \rightarrow \text{Sr}^{2+} \\ \text{Sr}^{2+} \rightarrow \text{Sr}^{2+} \\$$

Borax bead test :

Borax is heated on a loop of Pt wire, colourless glassy bead of sodium metaborate and boric anhydride is formed.

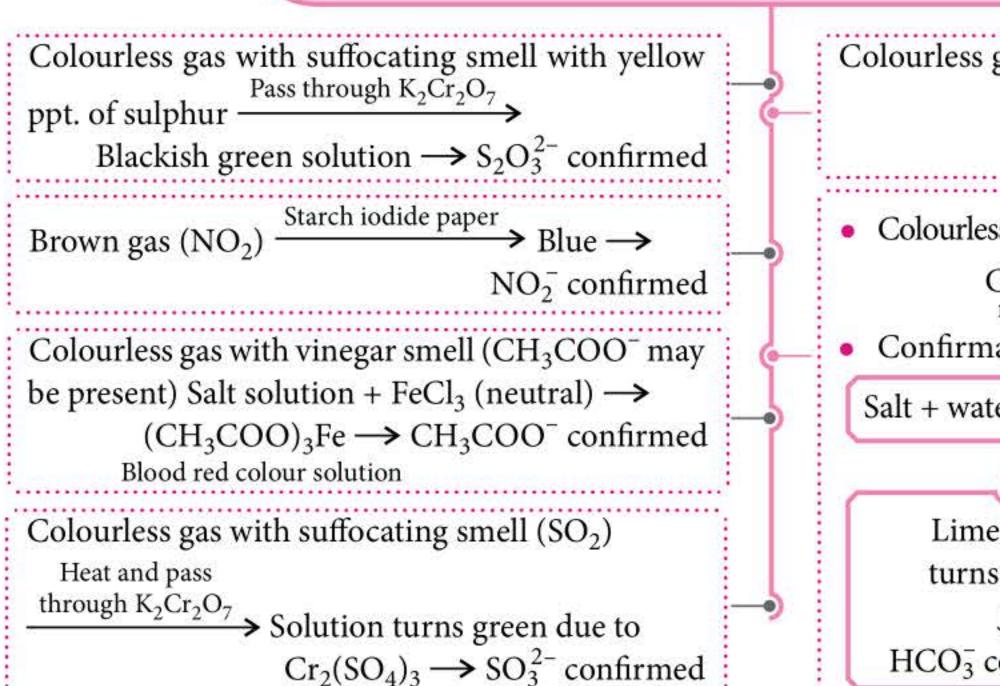

$$Na_2B_4O_7 \cdot 10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta}$$

$$2NaBO_2 + B_2O_3$$
Glassy bead

Coloured salts are then heated on the glassy bead, coloured metaborate is formed in the oxidising flame.

Colour of bead in oxidising flame	Ion indicated	
Green in hot, light brown in cold	Copper	
Pinkish violet in both hot and cold	Manganese	
Yellowish brown in hot and pale yellow in cold	Iron	
Brown in hot and pale brown in cold	Nickel	

Anions or Acidic Radicals


First group:

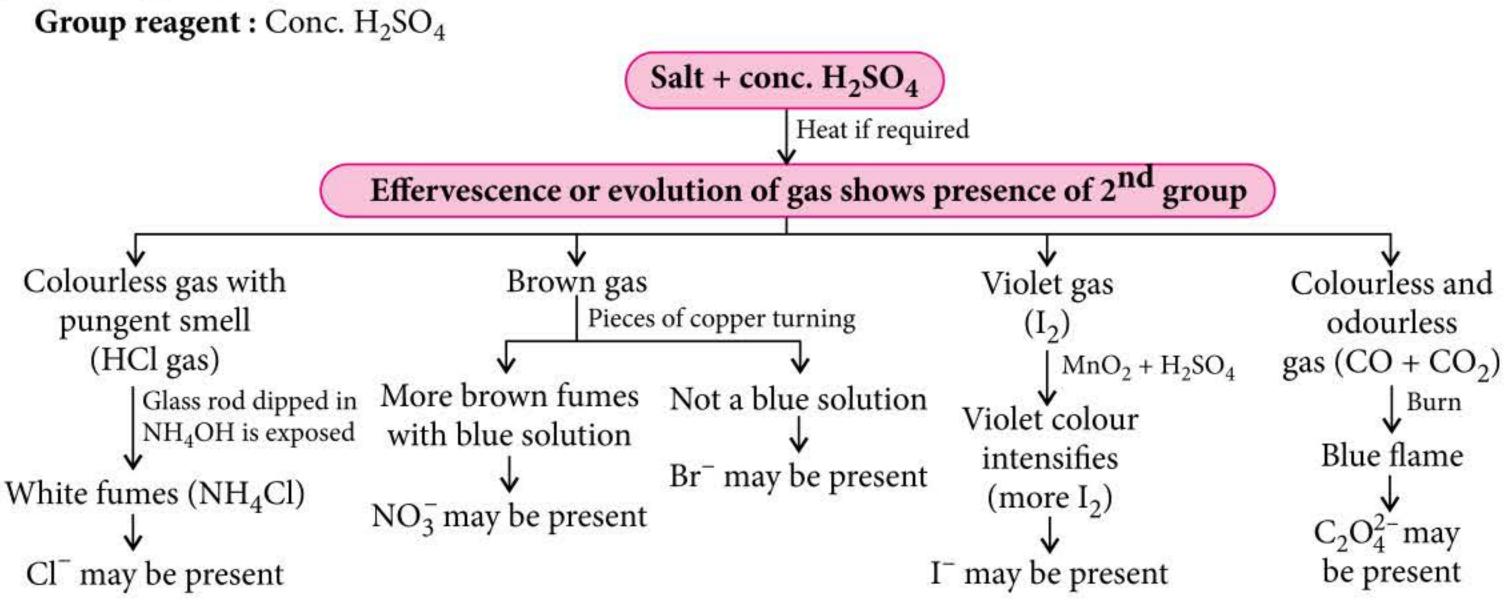
Group reagent: dil. HCl

Effervescence or evolution of gas shows presence of 1st group

Salt + dil. HCl

Colourless gas with rotten egg smell (H2S gas) $\xrightarrow{\text{Lead acetate}} \text{PbS} \longrightarrow \text{S}^{2-} \text{ confirmed}$

- Colourless and odourless gas (CO₂ gas) Lime water $CaCO_3(CO_3^{2-} \text{ or } HCO_3^{-} \text{ may be present})$
- Confirmation test for $HCO_3^- \& CO_3^{2-}$


Salt + water → boil and pass through lime water

Lime water turns milky HCO₃ confirmed

Lime water does not turn milky

 CO_3^{2-} confirmed

Second group:

Confirmatory tests of acid radicals:

Nitrate (NO₃)

prepared solution of ferrous sulphate: and concentrated sulphuric acid, gives: a brown ring at the junction of two liquids.

NaNO₃ + H₂SO₄
$$\longrightarrow$$
 NaHSO₄ + HNO₃
Salt
6FeSO₄ + 2HNO₃ + 3H₂SO₄ \longrightarrow
3Fe₂(SO₄)₃ + 4H₂O + 2NO

$$[Fe(H_2O)_6]SO_4 + NO \longrightarrow$$

 $[Fe(H_2O)_5NO]SO_4 + H_2O$

Brown ring

Iodide (I⁻)

Layer test: On treating salt with dilute: sulphuric acid, chloroform or carbon tetrachloride and chlorine water, gives violet coloured layer.

Chlorine replaces iodine that dissolves in chloroform.

$$2NaI + Cl_2 \longrightarrow 2NaCl + I_2$$
Salt

Starch paper test: Violet vapours with starch paper give blue colour.

Oxalate $(C_2O_4^{2-})$

aqueous solution of salt with freshly: with acetic acid and on adding cadmium salt with concentrated sulphuric acid in chloride solution gives white precipitate. Ithe presence of potassium dichromate, Filter and dissolve the precipitate in deep red vapours of chromyl chloride dilute sulphuric acid and add few drops : are evolved. of potassium permanganate solution. $:: NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$ The colour of potassium permanganate is discharged, indicates the presence of oxalate.

$$Na_2C_2O_4 + CaCl_2 \longrightarrow CaC_2O_4 \downarrow +$$
Sodium carbonate White ppt.

 $extract$ $2NaCl$
 $CaC_2O_4 + H_2SO_4 \longrightarrow H_2C_2O_4 + CaSO_4$
 $2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4$
 $+ 3H_2O + 5[O]$

COOH
$$+ [O] \rightarrow 2CO_2 + H_2O$$
 COOH

Confirmatory tests for acid radicals of group II

Chloride (Cl⁻)

Brown ring test : On treating On acidifying sodium carbonate extract Chromyl chloride test : On heating

$$NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$$

$$K_2Cr_2O_7 + 2H_2SO_4 \longrightarrow 2KHSO_4 + 2CrO_3 + H_2O$$

$$CrO_3 + 2HCl \longrightarrow CrO_2Cl_2\uparrow + H_2O$$

Chromyl chloride
(Red vapours)

These vapours on passing through sodium hydroxide solution give yellow solution of sodium chromate.

$$CrO_2Cl_2 + 4NaOH \longrightarrow Na_2CrO_4 +$$
Yellow colour
 $2NaCl + 2H_2O$

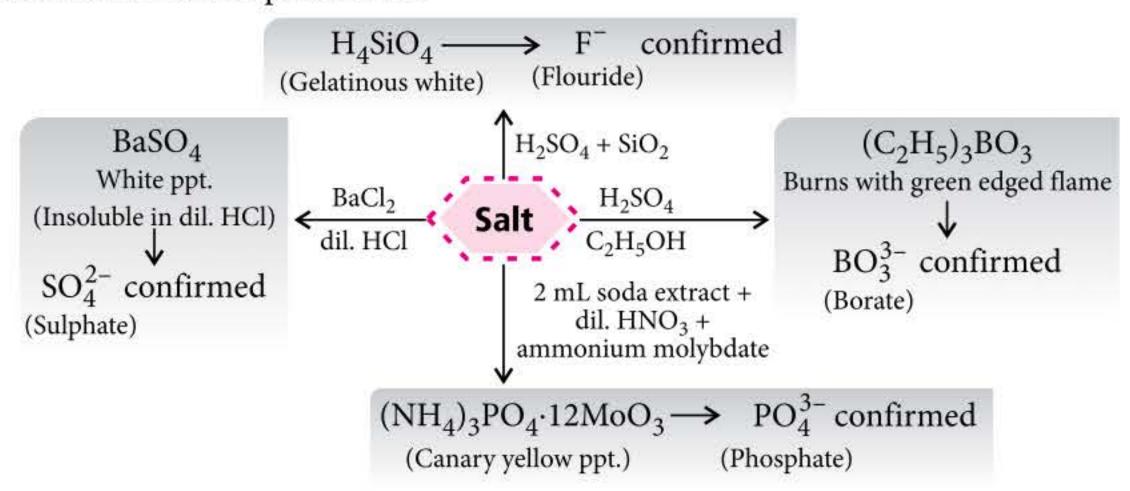
The yellow solution on neutralising with acetic acid and on addition of lead acetate gives yellow precipitate of lead chromate.

$$Na_2CrO_4 + (CH_3COO)_2Pb \longrightarrow$$
 $PbCrO_4 \downarrow + 2CH_3COONa$
 $Yellow ppt.$

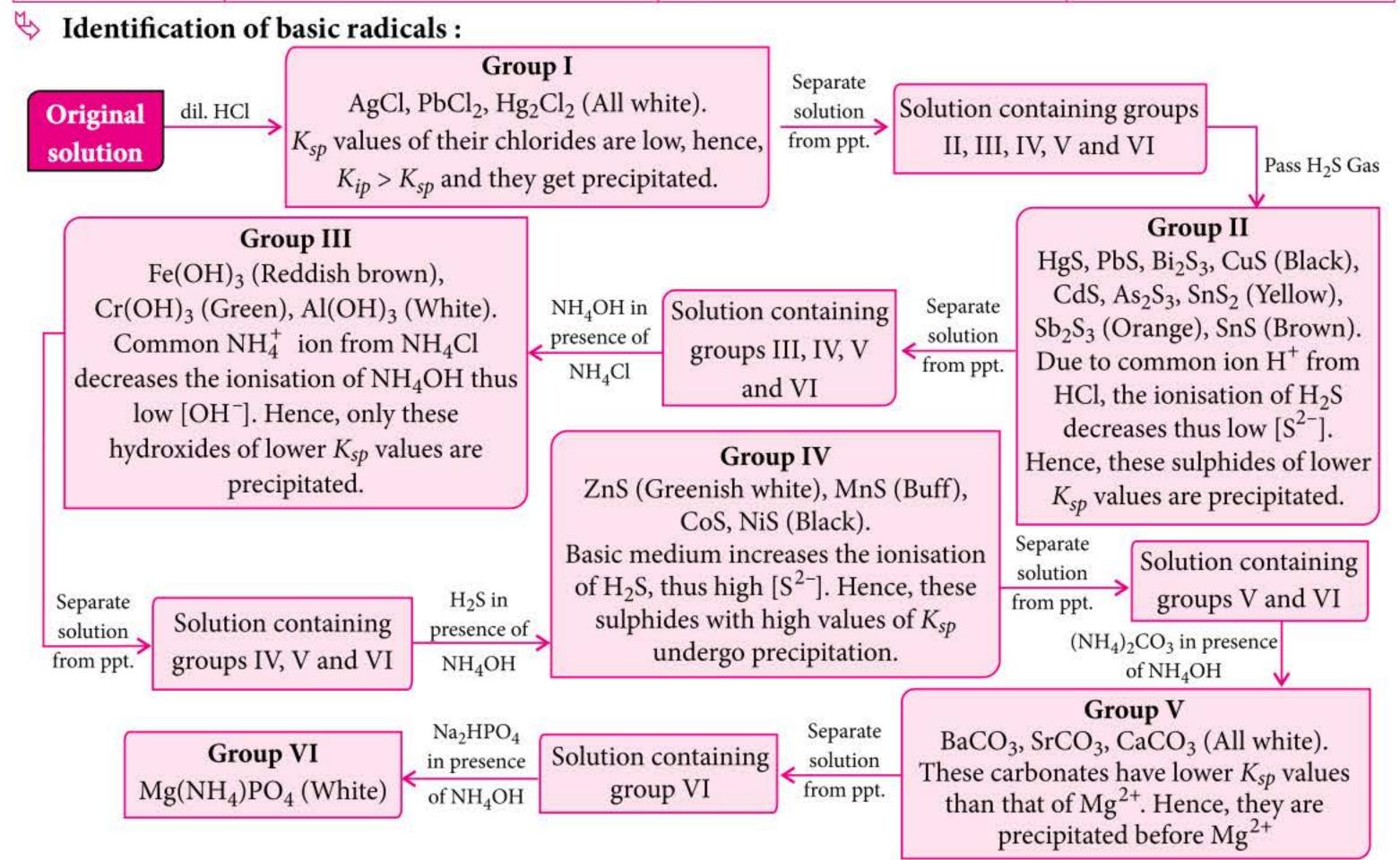
Bromide (Br⁻)

Layer test: On treating salt with dilute sulphuric acid, chloroform or carbon tetrachloride and chlorine water gives brown coloured layer. Chlorine replaces bromine that dissolves in chloroform.

$$2NaBr + Cl_2 \longrightarrow 2NaCl + Br_2$$


Br₂ + Chloroform → Brown coloured layer

New system to detect mercury in water systems!


new ultra-sensitive, low-cost and portable system for detecting mercury in environmental water has been developed by University of Adelaide researchers. The researchers team has engineered a nanoporous material called nanoporous anodic alumina to make a special structure called a rugate filter. The surface of the filter has been modified to make it selective to mercury ions. As water flows through the pores of the filter, the mercury ions become attached to the surface. An optical system—reflection spectroscopy—measures the amount of mercury present. A range of tests have shown the sensor can detect mercury at levels of 200 parts per billion in a complex mixture of other metal ions and environmental samples. Continued work will seek to enhance the optical signals for even higher sensitivity. The promising sensing performance of this system along with its cost-competiveness and portability make it an excellent potential alternative to current analytical techniques. This technique could provide the basis for future point-of-analysis systems for monitoring water quality on site and may help implement better monitoring processes around the world.

Third group: These radicals cannot be detected by either dil. H₂SO₄ or conc. H₂SO₄. For detection of these acidic radicals we need some specific tests.

CATIONS OR BASIC RADICALS

Group	Group reagent	Cations	Form of ppt.
I	dil. HCl	Pb ²⁺ , Ag ⁺ , Hg ₂ ²⁺	Chlorides
II	dil. HCl + H ₂ S gas	Pb ²⁺ , Hg ²⁺ , Cu ²⁺ , Cd ²⁺ , Bi ³⁺ , Sb ³⁺ , As ³⁺ , Sn ²⁺ /Sn ⁴⁺	Sulphides
III	NH ₄ Cl + NH ₄ OH	Fe ³⁺ , Al ³⁺ , Cr ³⁺	Hydroxides
IV	NH ₄ Cl + NH ₄ OH + H ₂ S gas	Zn ²⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺	Sulphides
V	$(NH_4)_2CO_3 + NH_4OH$	Ca ²⁺ , Sr ²⁺ , Ba ²⁺	Carbonates
VI	Na ₂ HPO ₄ + NH ₄ OH	Mg^{2+}	t - 1

