NEETJEE ESSENTIALS

Class

Maximise your chance of success, and high rank in NEET, JEE (Main and Advanced) by reading this column. This specially designed column is updated year after year by a panel of highly qualified teaching experts well-tuned to the requirements of these Entrance Tests.

Unit

Principles Related to Practical Chemistry

Practical work in labs improves the scientific knowledge and understanding of students, as well as providing opportunities for working scientifically and developing hands on skills.

Much of forensic science, medicine, pharmaceutical research and many chemical manufacturing processes, rely on accurate techniques and observations.

QUANTITATIVE ESTIMATION

A quantitative analysis is one in which the amount or concentration of a particular species in a sample is determined accurately and precisely.

Titration

The process of addition of the known solution from the burette to the measured volume of solution of the substance to be estimated until the reaction between the two is just complete.

Titration

Standard Solution

Unknown Solution

The solution consisting of substance to be estimated is termed as titrate or unknown solution.

Primary Standard

These can be accurately weighed and their solutions are not to be standardised before use e.g., oxalic acid, potassium dichromate, etc.

Secondary Standard

The solutions of these reagents are to be standardised before use as these cannot be weighed accurately e.g., sodium hydroxide, hydrochloric acid, etc.

Acid-base titration

- When the strength of an acid is determined with the help of a standard solution of base, it is known as acidimetry.
- When the strength of a base is determined with the help of a standard solution of an acid, it is known as alkalimetry.

These titrations involve neutralisation of an acid with an alkali.

$$HA + BOH \longrightarrow BA + H_2O$$

Acid Alkali Salt Water

Indicator

A substance which helps in physical detection of completion of the titration is called indicator.

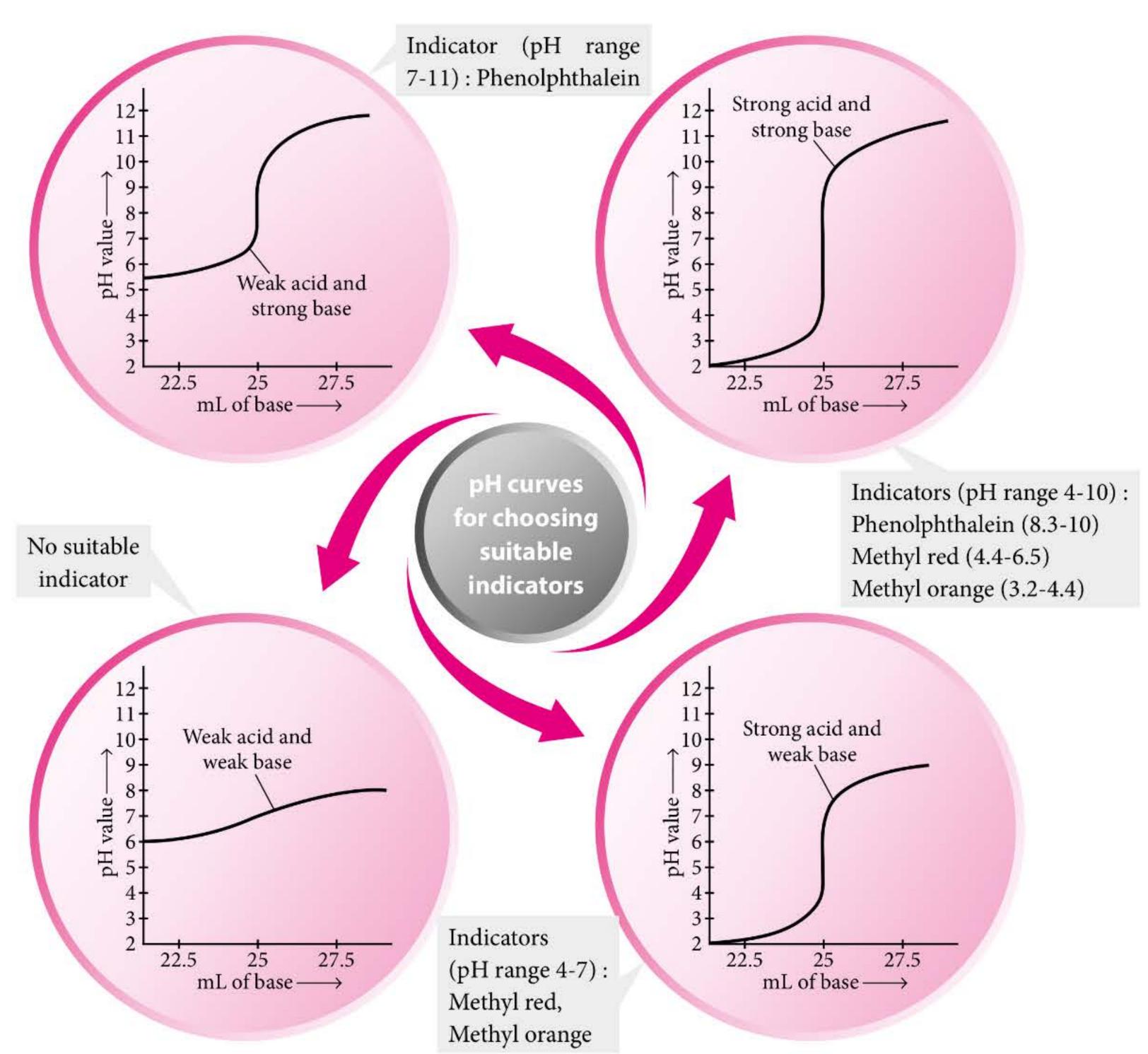
ndicators

- External Indicators

These indicators are not added in the reaction mixture. They are used outside the system e.g., potassium ferricyanide is used in titration of Mohr's salt against potassium dichromate.

Internal Indicators

These indicators are added in the reaction mixture e.g., in acid-base titration, methyl orange, methyl red and phenolphthalein.


Self Indicators

These indicators themselves show colour change at the end of titration e.g., in titration of oxalic acid against KMnO₄, KMnO₄ acts as self indicator.

How to choose a suitable indicator:

Indicator in a titration is selected on the basis of pH range at end point.

	Indicator pH-range		Colour of indicator	
Indicator			Alkaline	
Phenolphthalein	8.3 – 10	Colourless	Pink	
Methyl orange	3.2 – 4.4	Red	Yellow	
Methyl red	4.4 – 6.5	Red	Yellow	
Litmus	5.0 - 8.0	Red	Blue	
Phenol red	6.8 - 8.4	Yellow	Red	

Determination of Strength of NaOH

Principle : Strength of NaOH solution can be determined by titrating it against standard solution of oxalic acid.

$$\begin{array}{c} \text{COOH} \\ | \\ \text{COOH} \end{array} + 2\text{NaOH} \rightarrow \begin{array}{c} \text{COONa} \\ | \\ \text{COONa} \end{array} + 2\text{H}_2\text{O}$$

Indicator: Phenolphthalein

Preparation of standard solution:

Oxalic acid
$$\begin{pmatrix} COOH \\ | & 2H_2O \end{pmatrix}$$

Equivalent weight =
$$\frac{126}{2}$$
 = 63

For preparing 250 mL solution of N/10 oxalic acid,

weight required =
$$\frac{63 \times \frac{1}{10} \times 250}{1000} = 1.575 \text{ g}$$

Thus, for preparing N/10 oxalic acid, take 1.575 g of oxalic acid and make it upto 250 mL using distilled water.

Calculation:

$$N_1V_1 = N_2V_2$$

(Oxalic acid) (Caustic soda)

$$N_2 = \frac{N_1 V_1}{V_2}$$

Strength of caustic soda = Normality × Equivalent weight = $(N_2 \times 40)$ g/L

Determination of Strength of HCI

Principle : When hydrochloric acid is titrated against Na₂CO₃ solution, strength of HCl can be determined. Na₂CO₃ + 2HCl \rightarrow 2NaCl + H₂O + CO₂ \uparrow

Indicator: Methyl orange

Preparation of standard solution:

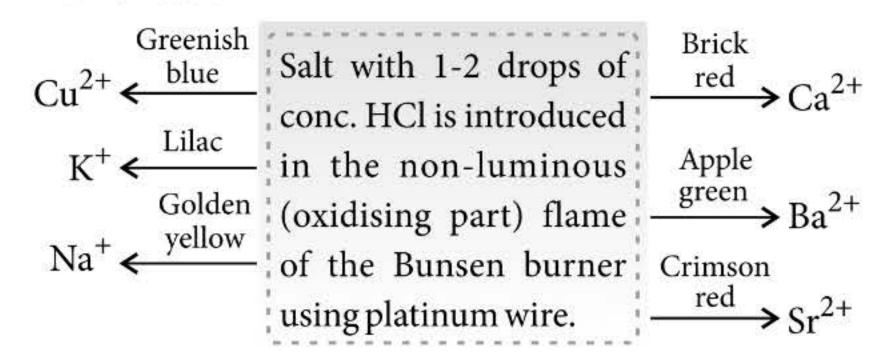
Eq. weight =
$$\frac{106}{2}$$
 = 53

For preparing 250 mL solution of N/10 Na₂CO₃,

weight required =
$$\frac{53 \times \frac{1}{10} \times 250}{1000} = 1.325 \,\mathrm{g}$$

Calculation:

$$N_1V_1 = N_2V_2$$
 ; $N_2 = \frac{N_1V_1}{V_2}$ (Na₂CO₃) (HCl)


Strength of given HCl = Normality × Eq. weight of HCl = $(N_2 \times 36.5)$ g/L

QUALITATIVE ANALYSIS

Qualitative analysis deals with the identification of various constituents present in a given material. For example, zinc blende contains zinc and sulphur in the form of Zn^{2+} and S^{2-} ions.

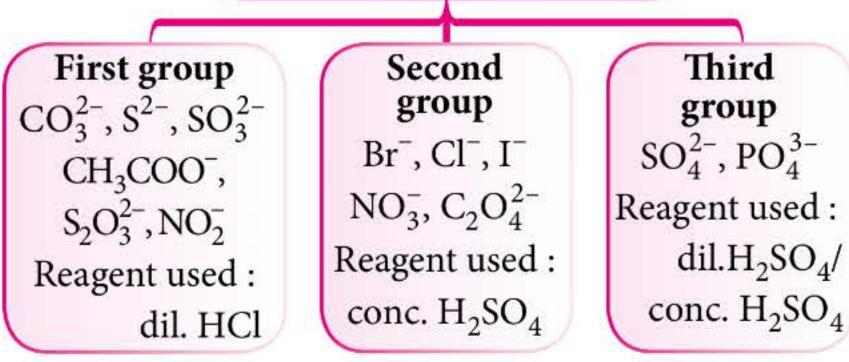
Preliminary Tests

Flame Test:

Borax Bead Test:

 Borax is heated on a loop of Pt wire, colourless, glassy bead of sodium metaborate and boric anhydride is formed.

$$Na_2B_4O_7 \cdot 10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta}$$


$$2NaBO_2 + B_2O_3$$
Glassy bead

 Coloured salts are then heated on the glassy bead, coloured metaborate is formed in the oxidising flame.

Colour of bead in oxidising flame	Ion indicated
Green in hot, blue in cold	Copper
Pinkish violet in both hot and cold	Manganese
Yellowish brown in hot and pale yellow in cold	Iron
Brown in hot and pale brown in cold	Nickel

Acidic Radicals

Anions are acidic radicals

Salt + dil. HCl

Effervescence or evolution of gas shows presence of group I acidic radicals

Colourless gas with suffocating smell with yellow ppt. of sulphur $\xrightarrow{\text{Pass through K}_2\text{Cr}_2\text{O}_7}$

Blackish green solution \longrightarrow S₂O₃²⁻ confirmed

Brown gas (NO₂) $\xrightarrow{\text{Starch iodide paper}}$ Blue $\xrightarrow{\text{NO}_2^-}$ confirmed

Colourless gas with vinegar smell (CH_3COO^- may be present) Salt solution + FeCl₃ (neutral) \rightarrow ($CH_3COO)_3Fe \rightarrow CH_3COO^-$ confirmed Blood red colour solution

Colourless gas with suffocating smell (SO₂)

Heat and pass

through $K_2Cr_2O_7$ Solution turns green due to $Cr_2(SO_4)_3 \longrightarrow SO_3^{2-}$ confirmed

Second Group: Salt + conc. H₂SO₄

Effervescence or evolution of gases indicates the presence of group II acidic radicals.

Gas	Radical	Observations and Reactions
HCl (Colourless gas, pungent smell)	Chloride (Cl ⁻)	$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl^{\uparrow}$ $Salt$ $NH_4OH + HCl \rightarrow NH_4Cl^{\uparrow} + H_2O$ $White dense$ $fumes$
Br ₂ (Brown fumes)	Bromide (Br ⁻)	NaBr + $H_2SO_4 \rightarrow NaHSO_4 + HBr$ Salt $2HBr + H_2SO_4 \rightarrow Br_2^{\uparrow} + 2H_2O + SO_2$ Brown
I ₂ (Deep violet gas)	Iodide (I⁻)	$2KI + 2H_2SO_4 \rightarrow 2KHSO_4 + 2HI$ Salt $2HI + H_2SO_4 \rightarrow I_2 \uparrow + SO_2 + 2H_2O$ Violet
NO ₂ (Light brown gas, pungent smell)	Nitrate (NO ₃)	$NaNO_3 + H_2SO_4 \rightarrow NaHSO_4 + HNO_3$ $Salt$ $4HNO_3 \rightarrow 2H_2O + 4NO_2^{\uparrow} + O_2^{\uparrow}$ $Light\ brown$ $fumes$

Colourless gas with rotten egg smell (H_2S gas) $\xrightarrow{\text{Lead acetate}} \text{PbS} \longrightarrow S^{2-} \text{ confirmed}$ Black ppt.

Colourless, odourless gas (CO₂ gas) Lime water
 CaCO₃(CO₃²⁻ or HCO₃⁻ may be present)

Milky

Confirmatory test for HCO₃⁻ & CO₃²⁻

Salt + water → boil and pass through lime water

Lime water does
not turn milky

HCO₃ confirmed

Lime water
turns milky

CO₃²⁻ confirmed

CO + CO₂ Oxalate
$$Na_2C_2O_4 + H_2SO_4 \rightarrow Na_2SO_4 + H_2C_2O_4$$
 (Colourless, odourless gas) Salt $H_2C_2O_4 + H_2SO_4 \rightarrow CO_2 + H_2O$ Burns with Turns lime blue flame water milky

Determination of sulphate by conductometric titration!

Titrimetric methods are much faster, but a good indicator has not been found for sulphate titrations. However, because the relative concentrations of ions in solution change during titration sequence, monitoring conductivity during the progress of a titration produces a signal which can be used to indicate equivalence point. A conductometric titration protocol has been developed which is relatively rapid, inexpensive and can produce accurate results.

Confirmatory Tests for Group II

Nitrate (NO₃) Brown ring test: On treating aqueous: On acidifying salt solution or sodium : Chromyl chloride test: solution of salt with freshly prepared: solution of ferrous sulphate and concentrated sulphuric acid, gives a brown ring at the junction of two liquids. $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3$ Salt

$$6\text{FeSO}_4 + 2\text{HNO}_3 + 3\text{H}_2\text{SO}_4 \longrightarrow$$

$$3\text{Fe}_2(\text{SO}_4)_3 + 4\text{H}_2\text{O} + 2\text{NO}$$

$$[\text{Fe}(\text{H}_2\text{O})_6]\text{SO}_4 + \text{NO} \longrightarrow$$

$$[\text{Fe}(\text{H}_2\text{O})_5\text{NO}]\text{SO}_4 + \text{H}_2\text{O}$$

Brown ring

Iodide (I-)

Layer test: On treating salt with dilute: sulphuric acid, chloroform or carbon tetrachloride and chlorine water, gives: violet coloured layer.

$$2NaI + Cl_2 \longrightarrow 2NaCl + I_2$$
Salt

 I_2 + Chloroform \longrightarrow Violet coloured layer

Starch paper test:

 I_2 + Starch \longrightarrow I_2 -starch complex Blue colour

Oxalate (C₂O₄²⁻)

carbonate extract with acetic acid and on $\mathbb{N}aCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$ adding calcium chloride solution gives: white precipitate.

$$Na_2C_2O_4 + CaCl_2 \longrightarrow CaC_2O_4 \downarrow +$$
Salt White ppt.

2NaCl

Filter and dissolve the precipitate in dilute sulphuric acid and add few drops of potassium permanganate solution.

$$CaC_2O_4 + H_2SO_4 \longrightarrow H_2C_2O_4 + CaSO_4$$
 solution of sodium chromate.
 $2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4$ $CrO_2Cl_2 + 4NaOH \longrightarrow Na_2CrO_4 + 3H_2O + 5[O]$ Yellow colour

COOH

$$| + [O] \rightarrow 2CO_2 + H_2O$$

COOH

Pink colour discharge of KMnO₄ confirming presence of oxalate ion.

Chloride (Cl⁻) ······

$$NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$$

Salt

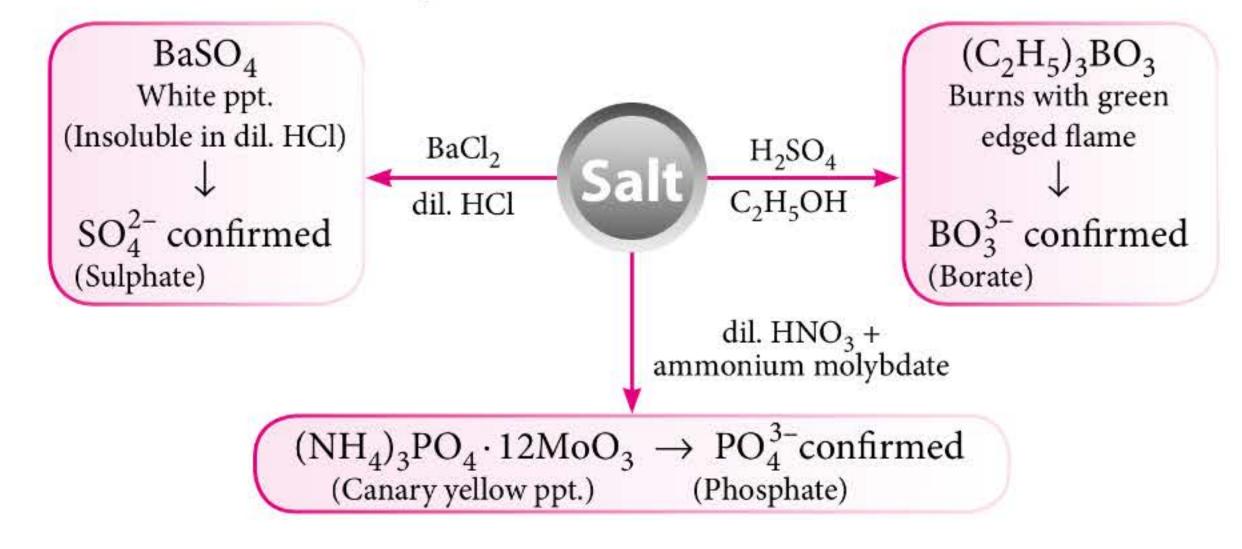
$$K_2Cr_2O_7 + 2H_2SO_4 \longrightarrow 2KHSO_4 + 2CrO_3 + H_2O$$
 $CrO_3 + 2HCl \longrightarrow CrO_2Cl_2 \uparrow + H_2O$
Chromyl chloride

These vapours on passing through sodium hydroxide solution give yellow

(Red vapours)

The yellow solution on neutralising with acetic acid and on addition of lead acetate gives yellow precipitate of lead chromate.

$$Na_2CrO_4 + (CH_3COO)_2Pb \longrightarrow$$
 $PbCrO_4 \downarrow + 2CH_3COONa$
 $Yellow ppt.$


Confirmatory tests for acid radicals of group II

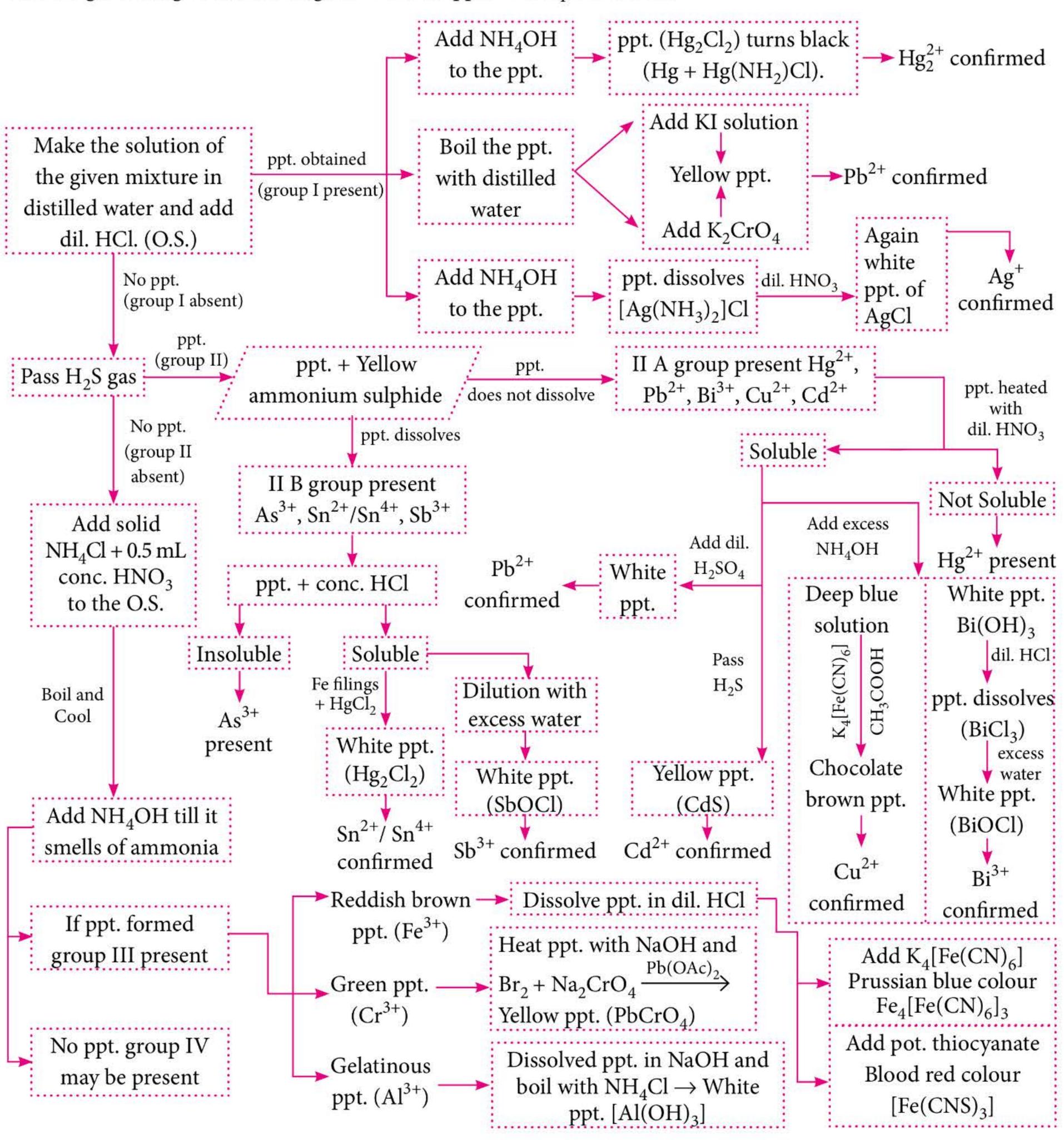
Bromide (Br⁻)

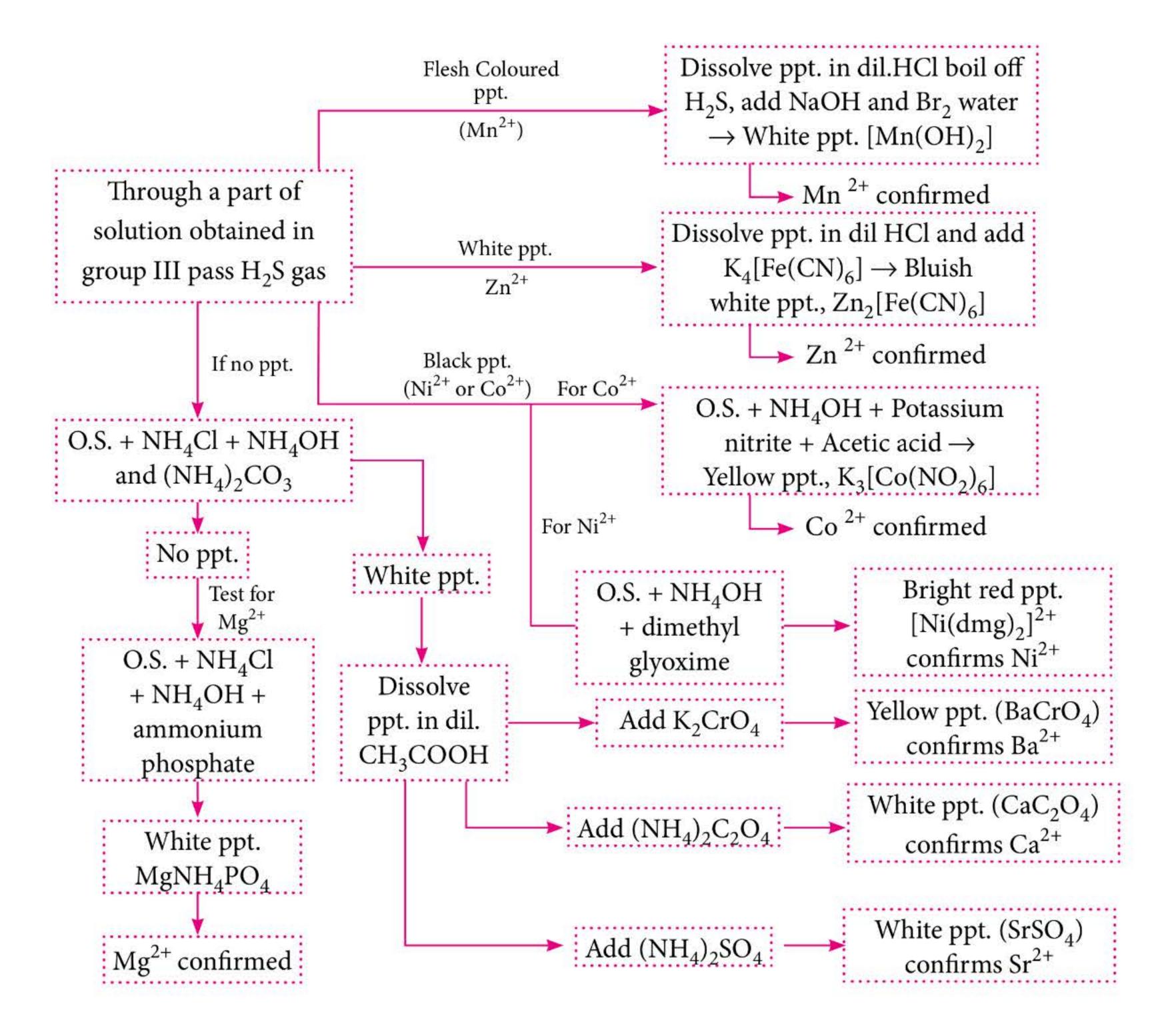
Layer test: On treating salt with dilute sulphuric acid, chloroform or carbon tetrachloride and chlorine water gives brown coloured layer. 2NaBr + Cl₂ \longrightarrow 2NaCl + Br₂ Salt

 Br_2 + Chloroform \longrightarrow Brown coloured layer

Third Group: These anions are identified by their characteristic chemical reactions.

Basic Radicals


Cations are the basic radicals.


Group	Group reagent	Cations	Form of ppt.
I	dil. HCl	Pb ²⁺ , Ag ⁺ , Hg ₂ ²⁺	Chlorides
II	dil. HCl + H ₂ S gas	Pb ²⁺ , Hg ²⁺ , Cu ²⁺ , Cd ²⁺ , Bi ³⁺ ,	Sulphides
	AVA. 174.44	Sb ³⁺ , As ³⁺ , Sn ²⁺ /Sn ⁴⁺	

III	NH ₄ Cl + NH ₄ OH	Fe ³⁺ , Al ³⁺ , Cr ³⁺	Hydroxides
IV	NH ₄ Cl + NH ₄ OH + H ₂ S gas	Zn ²⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺	Sulphides
V	$(NH_4)_2CO_3 + NH_4OH + NH_4Cl$	Ca ²⁺ , Sr ²⁺ , Ba ²⁺	Carbonates
VI	Na ₂ HPO ₄ + NH ₄ OH	Mg^{2+}	Phosphates

Analysis of Basic Radicals: Zero group $[NH_4^+]$: To the salt, add NaOH solution and heat. If ammonia gas evolves, NH_4^+ is present.

Pass the gas through Nessler's reagent \rightarrow Brown ppt. \rightarrow NH₄⁺ confirmed.

Detection of N, S, Cl in organic compounds

Lassaigne's extract :

A small pellet of metallic sodium together with a little amount of the substance is heated to red hot in an ignition tube. It is then suddenly plunged into about 10 mL of distilled water in a China dish. The mixture is boiled well and filtered. Filtrate is known as Lassaigne's extract (L.E.).

Element	Detection	Confirmatory test	Reactions
Nitrogen	Lassaigne's extract (L.E.)	L.E. + FeSO ₄ + NaOH, boil	$FeSO_4 + 2NaOH \longrightarrow Fe(OH)_2$
11300	$Na + C + N \xrightarrow{\Delta} NaCN$	and $cool + FeCl_3 + conc.$ HCl	+ Na ₂ SO ₄
	(L.E.)	Gives blue or green colour.	$Fe(OH)_2 + 6NaCN \longrightarrow$
			$Na_4[Fe(CN)_6] + 2NaOH$
			$Na_4[Fe(CN)_6] + FeCl_3 \xrightarrow{HCl}$
			NaFe[Fe(CN) ₆] + 3NaCl Prussian blue
			or $3Na_4[Fe(CN)_6] + 4FeCl_3 \longrightarrow$
			Fe ₄ [Fe(CN) ₆] ₃ + 12NaCl Prussian blue

Sulphur	$2Na + S \xrightarrow{\Delta} Na_2S$ (L.E.)	(i) L.E. + sodium nitroprusside A deep violet colour. (ii) L.E. + CH ₃ COOH + (CH ₃ COO) ₂ Pb Gives a black ppt.	(i) Na ₂ S + Na ₂ [Fe(CN) ₅ NO] → Sodium nitroprusside Na ₄ [Fe(CN) ₅ NOS] Deep violet (ii) Na ₂ S + (CH ₃ COO) ₂ Pb CH ₃ COONa PbS↓ + 2CH ₃ COONa Black ppt.
Halogens	Na + $X \xrightarrow{\Delta}$ Na X (L.E.) ($X = Cl, Br, I$)	L.E. + HNO ₃ + AgNO ₃ (i) White ppt. soluble in aq. NH ₃ (or NH ₄ OH) confirms Cl. (ii) Pale yellow ppt. partially soluble in aq. NH ₃ (or NH ₄ OH) confirms Br. (iii) Yellow ppt. insoluble in aq. NH ₃ (or NH ₄ OH) confirms I.	NaX + AgNO ₃ $\xrightarrow{\text{HNO}_3}$ AgX \downarrow + NaNO ₃ White ppt. AgCl + 2NH ₄ OH _(aq.) \longrightarrow [Ag(NH ₃) ₂]Cl + 2H ₂ O Soluble
Nitrogen and sulphur together	Na + C + N + S $\xrightarrow{\Delta}$ NaSCN (L.E.) Sodium thiocyanate	As in test for nitrogen; instead of green or blue colour, blood red colouration confirms presence of N and S both.	T

- 1. An aqueous solution of 6.3 g oxalic acid dihydrate is made upto 250 mL. The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is
 - (a) 40 mL
- (b) 20 mL
- (c) 10 mL
- (d) 4 mL
- 2. Which of the following compounds does not show Lassaigne's test for nitrogen?
 - (a) Urea
- (b) Hydrazine
- (c) Phenylhydrazine
- (d) Azobenzene
- The group reagent for the group V radicals is
 - (a) $(NH_4)_2CO_3$
 - (b) $(NH_4)_2SO_4$
 - (c) NH₄Cl
- (d) $(NH_4)_2C_2O_4$
- In qualitative analysis, Cd²⁺ is under
 - (a) group IV
- (b) group III
- (c) group II (d) group I.

- 5. A colourless salt gives violet colour in Bunsen flame, it may be
 - (a) Na_2CO_3
- (b) Na₂CrO₄
- (c) K_2CO_3
- (d) BaCO₃.
- 6. A doctor by mistake administered Ba(NO₃)₂ solution to a patient for radiography investigations. Which of the following should be given as the best to prevent the absorption of soluble barium?
 - (a) Na_2CO_3
- (b) NH₄Cl
- (c) NaCl
- (d) Na₂SO₄
- 7. Which of the following compounds are partially soluble or insoluble in NH₄OH solution?
 - $(1) Fe(OH)_3$
- (2) Ag₂CrO₄
- $(3) Al(OH)_3$
- (4) Ag₂CO₃
- (5) Ni(OH)₂

- (a) 1, 3 (b) 2, 3, 5 (c) 1, 3, 5 (d) 2, 3, 4