ELECTROCHEMISTRY

Get well-prepared for exams with quick revision of important concepts of physical chemistry.

CONCEPT **CLASS XII**

Basic Terms

Conductance:

$$C = \frac{1}{R}$$
; Unit: Ω^{-1} or S

Specific resistance or resistivity:

$$R = \rho \frac{l}{a} \Rightarrow \rho = R \frac{a}{l}$$
; Unit: Ω cm or Ω m
 $(1 \Omega \text{ m} = 100 \Omega \text{ cm or } 1 \Omega \text{ cm} = 0.01 \Omega \text{ m})$

Specific conductance or conductivity:

$$\kappa = C \times \frac{l}{a}$$
; Unit: Ω^{-1} cm⁻¹ or S cm⁻¹

Equivalent conductivity

$$\Lambda_{eq} = \frac{\kappa \times 1000}{\text{Normality}}$$
; Unit: S cm² eq⁻¹

Molar conductivity

$$\Lambda_m = \frac{\kappa \times 1000}{\text{Molarity}}; \text{ Unit : S cm}^2 \text{ mol}^{-1}$$

Kohlrausch's law

For a strong electrolyte $A_x B_y$, $\Lambda_m^{\circ} = x\lambda_+^{\circ} + y\lambda_-^{\circ}$ where, Λ_m° = Limiting molar conductivity

Nernst Equation

$$E_{(M^{n+}/M)} = E_{(M^{n+}/M)}^{\circ} - \frac{0.0591}{n} \log \frac{1}{[M^{n+}]}$$
(at 298 K)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log \frac{[\text{Oxidised}]}{[\text{Reduced}]}$$
(at 298 K)

For concentration cell:

$$E_{\text{cell}} = \frac{0.0591}{n} \log \frac{C_2}{C_1}; E_{\text{cell}} = +\text{ve if } C_2 > C_1$$

For a reaction in equilibrium:

$$E_{\text{cell}}^{\circ} = \frac{0.0591}{n} \log K \text{ at } 298 \text{ K}$$

$$\Delta_r G^{\circ} = -nFE_{\text{cell}}^{\circ}$$

$$\Delta_r G^{\circ} = -RT \ln K$$

 $\Delta G_3^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ}$ (when different number of electrons are involved) $-n_3FE_3^{\circ} = -n_1FE_1^{\circ} - n_2FE_2^{\circ}$

$$E_{H^+/H_2} = -0.0591 \, \text{pH}$$

Relation between free energy and cell potential:

Type of reaction	ΔG	E	Type of cell
Spontaneous	-ve	+ve	Galvanic
Non-spontaneous	+ve	-ve	Electrolytic
Equilibrium	0	0	Dead battery

Types of Cell

Electrolytic Cell

A device which uses electrical energy to carry out some non-spontaneous chemical reactions.

Faraday's first law

Faraday's second law

$$W = Zit$$

$$\frac{W_1}{W_2} = \frac{E_1}{E_2} = \frac{Z_1}{Z_2}$$

Electrochemical Cell

A device which converts chemical energy into electrical energy.

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

or, $E_{\text{cell}}^{\circ} = E_{\text{right}}^{\circ} - E_{\text{left}}^{\circ}$

Fuel Cells

H₂-O₂ Fuel Cell

Anode:
$$2H_{2(g)} + 4OH_{(aq)}^{-} \rightarrow 4H_{2}O_{(l)} + 4e^{-}$$

Cathode: $O_{2(g)} + 2H_{2}O_{(l)} + 4e^{-}$

$$\rightarrow$$
 4OH⁻(aq)
Net reaction: 2H_{2(g)} + O_{2(g)} \rightarrow

program, etc. Thermodynamic efficiency (η) of a fuel cell = $\frac{\Delta G}{\Delta H} = -\frac{nFE}{\Delta H}$

Corossion

Rusting of iron: Formation of brown complex of $Fe_2O_3 \cdot xH_2O$ in presence of O_2 and H_2O .

Tarnishing of metals: Formation of thin layer of corrosion over metals such as copper, silver, aluminium, etc.

Some Commercial Cells

Primary Cells

Dry cell

Anode: Zinc container

Cathode: Carbon (graphite)

Electrolyte: Moist paste of NH₄Cl

+ ZnCl₂

Net reaction: $Zn_{(s)} + 2NH_{4(aq)}^+$ $2\text{MnO}_{2(s)} \rightarrow \text{Zn}_{(aq)}^{2+} + 2\text{MnO}(\text{OH})_{(s)}$

 $+2NH_{3(g)}$

Uses: In transistors and clocks, etc.

Mercury cell

Anode: Zn-Hg amalgam

Cathode: Mercury (II) oxide

Electrolyte: Paste of KOH + ZnO

Net reaction: $Zn(Hg)_{(s)} + HgO_{(s)}$

 \rightarrow ZnO_(s) + Hg_(l) Uses: In watches, hearing aids, etc.

Secondary Cells

Lead storage cell

Anode: Pb; Cathode: PbO₂

Electrolyte: 35-38% H₂SO₄ solution

Net reaction: $Pb_{(s)} + PbO_{2(s)} +$

 $2H_2SO_{4(aq)} \rightarrow 2PbSO_{4(s)} + 2H_2O_{(l)}$

The reverse reaction takes place

during recharging:

$$2PbSO_{4(s)} + 2H_2O_{(l)} \rightarrow Pb_{(s)} + PbO_{2(s)} + 2H_2SO_{4(aq)}$$

Uses: In automobiles and inverters.

Nickel-cadmium cell

Anode: Cadmium

Cathode: Nickel (IV) oxide

Electrolyte: KOH solution

Net reaction : $Cd_{(s)} + 2Ni(OH)_{3(s)}$

 \rightarrow CdO_(s) + 2Ni(OH)_{2(s)} + H₂O_(l)

The reverse reaction takes place

during recharging:

$$CdO_{(s)} + 2Ni(OH)_{2(s)} + H_2O_{(l)} \rightarrow$$

 $Cd_{(s)} + 2Ni(OH)_{3(s)}$

Uses: In portable electronic devices, emergency lighting, photography equipments, etc.

 \bigcirc

