

HYDROCARBONS

Get well-prepared for exams with quick revision of important concepts of organic chemistry.

Alkanes (C_nH_{2n+2})

- Boiling points and melting points:

- Alkanes with even no. of carbon atoms are more closely packed and thus show higher m.pt. as compared to next alkane with odd no. of carbon atoms.

Chemical Properties:

- Least reactive because of strong C—C and C—H σ bonds.
- Undergo only substitution reactions.
- Sulphonation and halogenation occur by free radical mechanism.

0

Conformations of Ethane

Sawhorse projection :

Newmann projection :

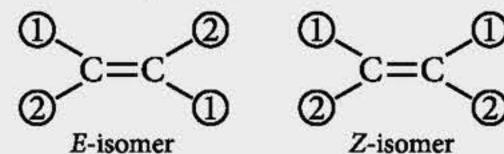
Order of Stability

- Staggered (anti) > gauche > partially eclipsed > fully eclipsed
- For cyclohexane; chair > half-chairboat
- Baeyer's strain theory:
 Amount of deviation (d)
 = 1/2(109°28' valency angle)
- Addition of symmetrical reagents over symmetrical alkenes can be generalised as:

•

Alkenes (C_nH_{2n})

- Boiling points : cis-isomer > transisomer
- Most substituted alkenes are more stable.


$$R_2C = CR_2 > R_2C = CHR >$$

 $RCH = CHR (trans)$
 $R_2C = CH_2 > RCH = CHR (cis)$
 $> RCH = CH_2 > CH_2 = CH_2$

- Undergo electrophilic addition reactions.
- Test for unsaturation: Gives bromine water and Baeyer's tests.
- Addition of unsymmetrical reagents (HX, H₂O, HOX, etc.) takes place according to Markovnikov's rule.

Geometrical (cis-trans): Molecules have identical atomic arrangement but different geometries.

■ Eand Z system:

- Calculation of geometrical isomers in polyenes:
 - (a) When the ends of polyene are different, then the number of geometrical isomers = 2^n where, n is the number of double bonds.
 - (b) When the ends of polyene are same,
 - (i) When *n* is an even number, then the number of geometrical isomers $= 2^{(n-1)} + 2^{(n/2-1)}$
 - (ii) When n is an odd number, then the number of geometrical isomers

$$=2^{(n-1)}+2^{\left(\frac{n-1}{2}\right)}$$

- cis-alkene + syn-addition → meso-product
- cis-alkene + anti-addition →
 racemic-product

Alkynes (C_nH_{2n-2})

- Melting points and boiling points: Alkynes > Alkenes > Alkanes.
- Acidity: Alkynes > Alkenes > Alkanes (as s-character

 acidity).
- Degree of unsaturation or index of hydrogen deficiency

$$=(2n_1+2-n_2)/2,$$

where, n_1 = number of carbon atoms, n_2 = number of hydrogen atoms.

- Test for unsaturation: Gives bromine water and Baeyer's test.
- Undergo electrophilic and nucleophilic addition.

Aromatic Compounds

- A compound is said to be aromatic when it is cyclic and planar.
- It has complete delocalisation of π-electrons.
- It follows Huckel's rule, i.e., (4n + 2)π electrons. Where, n is a positive integer (0, 1, 2, 3, ...).
- A compound is said to be antiaromatic when it is cyclic, planar, conjugated and have 4nπ electrons.

Directive influence of Substituents

- o-, p-directing groups : -R(alkyl),
 - $-OH, -SH, -NH_2, -O^-, -OR,$
 - -NHR, $-NR_2$, -NHCOR, -Cl, -Br,
 - -I, -CH2Cl, -CH2OH, -CH2NH2,
 - -CH₂CN, -CH₂COOH,
 - -CH=CH₂, -CH=CHCOOH,
 - $-C_6H_5$, -N=N, -NC, etc.
- m-directing groups:
 - –SO₃H, –NO₂, –CHO, –COOH, –CN, SO₂Cl, –COCl, –COOR, –COR,
 - $-CONH_2$, $-CCl_3$, $-CF_3$, $-NH_3$,
 - $-NH_{2}R$, $-NH_{2}R$, $-NR_{3}$, etc.
 - trans-alkene + syn-addition →
 racemic-product
 - trans-alkene + anti-addition →

 meso-product