# CONCEPT MAP

# **ESSENTIALS OF INORGANIC CHEMISTRY (PART I)**

## **General Principles and Processes of Isolation of Elements**

#### Metallurgy

- Minerals: Naturally occurring chemical substances in the earth's crust obtainable by mining.
- Ores: The minerals from which metal can be extracted profitably and conveniently.
- Metallurgy: The entire scientific and technological process used for isolation of the metal from its ore.

#### Concentration of Ore

The whole process of obtaining a pure metal from its ore.

- Crushing and Grinding (Pulverisation): Lumps of ore Crushers Small pieces Ball Fine powder
- Concentration or Benefication of Ore: It is the removal of gangue or matrix from the powdered ore. The impurities present in an ore are called gangue or matrix.
- Gravity separation or levigation or hydraulic washing : For oxide ores, based on difference in the densities of ore (heavier) and gangue particles, using wilfley tables.
- Froth floatation: For sulphide ores, based on perferential wetting of ore (by oil) and gangue (by water).
- Magnetic separation : Based on difference in magnetic properties. (Either ore or the impurities associated with magnetic nature.)
- Leaching: When ore is soluble in a suitable solvents while impurities are not.

For Al → Baeyer's process : from bauxite ore For Au → Mac-Arthur Forest cyanide process : from argentite ore.

# Thermodynamic Principles of Metallurgy

For a reaction to occur,  $\Delta G$  should be negative. A reaction with  $\Delta G$  positive can be made to occur if it is coupled with another reaction having a large negative  $\Delta G$ , so that the net  $\Delta G$  of both the reactions is positive.

Ellingham Diagram: Plots of  $\Delta_r G^{\circ}$  vs T. These help in predicting the feasibility of thermal reduction of an ore to

- Slope = Positive, because ΔG° increases with rise in T.
- Each curve is a straight line except when phase changes take place  $(s \rightarrow l, l \rightarrow g)$ .
- Metal oxide placed higher in the diagram can be reduced by the metal placed lower.

### **Metals from Concentrated Ore**

- Concentrated Ore: Conversion of concentrated ore into reducible form (oxidation).
- Calcination: Converting concentrated ore into oxide by heating it strongly below its melting point in the
- Roasting: The concentrated ore (usually sulphide) is heated strongly, in the presence of excess of air below its melting point.
- Reduction or conversion of oxides to metals: The ore obtained after calcination or roasting is reduced to metal and choice of reducing agent depends upon the nature of ore.
- Carbon or carbon monoxide is used for oxides of Fe, Cu, Zn, Mg, Co, etc. and the process is called smelting.
- Electropositive metals like Na, Al, Mg or hydrogen are used for reduction of ores of Mn, Cr, Ti, Mo, W, etc.
- Auto-reduction process is used for ores of Pb, Hg, Cu, etc.
- Electrolytic reduction is used for highly electropositive
- Hydrometallurgy or displacement method is used for Ag,

#### Refining

| Methods                  | Metals Purified                                                                                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Liquation                | Used for low melting metals like Sn, Pb, Hg,<br>Bi, etc.                                                                                                                    |
| Distillation             | Used for volatile metals like Zn, Hg, Cd, etc., or metals containing non-volatile impurities.                                                                               |
| Poling                   | Used for metals which contain impurities of their own oxides e.g., Cu.                                                                                                      |
| Cupellation              | Used for metals containing easily oxidisable impurities e.g., Ag containing Pb impurities.                                                                                  |
| Electrolytic<br>refining | Used for metals like Cu, Ag, Au, Al which<br>get deposited at cathode and impurities get<br>deposited at anode. Solution of a soluble<br>metal salt acts as an electrolyte. |
| Mond's<br>process        | Used for refining of Ni.                                                                                                                                                    |
| Zone<br>refining         | Used to produce extremely pure metals (semiconductors) like Si, Ge, Ga, B and In.                                                                                           |
| vån Arkel<br>method      | Used for ultra-pure metals like Ti, Zr which are used in space technology.                                                                                                  |

#### The p-Block Elements (Group 15 to 18)

#### **Group-15 Elements**

- General electronic configuration: ns<sup>2</sup>np<sup>3</sup>
- General trends in physical properties :



Moscovium (Mc): Atomic no. 115

#### **Chemical Properties**

- Hydrides: Form MH<sub>3</sub> type hydrides.
- Melting point: PH<sub>3</sub> < AsH<sub>3</sub> < SbH<sub>3</sub> < NH<sub>3</sub> **Boiling point**:  $BiH_3 > SbH_3 > NH_3 > AsH_3 > PH_3$
- Halides: Form MX<sub>3</sub> and MX<sub>5</sub> types of halides.
- Lewis acid strength: PCl<sub>3</sub> > AsCl<sub>3</sub> > SbCl<sub>3</sub> and

Lewis base strength: NI<sub>3</sub> > NBr<sub>3</sub> > NCl<sub>3</sub> > NF<sub>3</sub>

#### **Group-17 Elements**

- General electronic configuration: ns<sup>2</sup>np<sup>5</sup>
- General trends in chemical properties :



Tennessine (Ts): Atomic no. 117

#### Chemical Properties

- Oxidizing power: F<sub>2</sub> > Cl<sub>2</sub> > Br<sub>2</sub> > I<sub>2</sub>
- Hydrogen halides:
- B.Pt. and M.Pt. : HF > HI > HBr > HCl
- Dipole moment and Thermal stability: HF > HCl > HBr > HI
- Bond length, acidic strength and reducing nature : HF < HCl < HBr < HI
- Oxoacids of halogens :
  - Acidic strength: HClO < HClO2 < HClO3 < HClO4

# **Group-16 Elements**

- General electronic configuration: ns2np4
- General trends in physical properties :



Livermorium (Lv): Atomic no. 116

#### **Chemical Properties**

- **Hydrides**:  $H_2M$  type, where M is  $sp^3$  hybridised.
- M.Pt. and B.Pt.: H<sub>2</sub>O > H<sub>2</sub>Te > H<sub>2</sub>Se > H<sub>2</sub>S
- Thermal stability: H<sub>2</sub>O > H<sub>2</sub>S > H<sub>2</sub>Se > H<sub>2</sub>Te
- Volatility:  $H_2O < H_2Te < H_2Se < H_2S$
- Reducing power:  $H_2O < H_2S < H_2Se < H_2Te$
- Bond angle and dipole moment :  $H_2Te < H_2Se < H_2S < H_2O$
- Halides: Form  $MX_6$ ,  $MX_4$  and  $MX_2$  types of halides. Dihalides: All elements except selenium form dihalides.
- Tetrahalides: SF<sub>4</sub>(gas), SeF<sub>4</sub>(liquid), TeF<sub>4</sub> (solid). SF<sub>4</sub>
- is readily hydrolysed than SF6.
- Oxyhalides: Only S and Se form oxyhalides.
- Oxides: SO2 and SeO2; SO3, SeO3 and TeO3: Acidic
  - TeO<sub>2</sub> and PoO<sub>2</sub>: Amphoteric

# **Group-18 Elements**

- General electronic configuration: ns2np6
- General trends in physical properties :



Oganesson (Og): Atomic no. 118

# **Chemical Properties**

- M.Pt. and B.Pt. are very low.
- Ionisation enthalpy: He > Ne > Ar > Kr > Xe > Rn