Brush up your concepts to get high rank in NEET/JEE (Main and Advanced) by reading this column. This specially designed column is updated year after year by a panel of highly qualified teaching experts well-tuned to the requirements of these Entrance Tests. ## **Polymers | Chemistry in Everyday Life** **Polymers** #### POLYMERS The process of formation of a bigger molecule from any simpler molecules through mutual bonding is called polymerisation. The simpler molecules undergoing polymerisation are known as monomers and the bigger molecule formed is called a polymer. $$nCH_2 = CH_2 \xrightarrow{\text{Polymerisation}} + CH_2 - CH_2 - \frac{1}{n}$$ Ethene (Monomer) Polythene (Polymer) Homopolymers: Polymers made up of only one type of monomers *e.g.*, polythene, polypropylene. $$nCH_3$$ — $CH = CH_2$ Polymerisation Polypropylene Polypropylene Copolymers: Polymers made up of two or more types of monomers e.g., nylon 6,6. The process of formation of copolymer is called copolymerisation. $nNH_2(CH_2)_6NH_2 + nHOOC(CH_2)_4COOH$ Copolymers have better physical mechanical properties, which can be changed by varying the amount of each monomer. #### **Classification of Polymers** ## **Types of Polymerisation Reaction** Addition polymerisation: In addition polymerisation, the unsaturated monomeric molecules undergo repeated addition reactions in the presence of catalysts like O₂, organic peroxides. Some examples of addition polymers are polythene from ethylene, polypropylene from propylene, polyisoprene from isoprene. etc. (i) $$nCH_2 = CH \longrightarrow +CH_2 - CH +_n$$ Cl Cl Cl Vinyl chloride Polyvinyl chloride (ii) $$nCH_2=C-CH=CH_2\rightarrow \{-CH_2-C=CH-CH_2\}_n$$ CH_3 ## Mechanism of Addition Polymerisation or Chain Growth Polymerisation - Free radical addition polymerisation: This is initiated by adding a substance which generate free radicals called an initiator e.g., benzoyl peroxide. - Chain initiation: Peroxide molecules break up and generate free radicals which act as initiators and react with monomer molecules and generate a larger free radical or growing chain. $$R - \overset{O}{C} - \overset{O}{O} \overset{O}{C} - \overset{O}{C} - R \xrightarrow{\Delta} 2R - \overset{O}{C} - O$$ $$2\dot{R} + 2CO_{2}$$ $$R+CH_2$$ $\rightarrow R-CH_2-\dot{C}H_2$ Chain propagating step: The free radical thus formed adds to the double bond of the monomer to form larger free radical. $$RCH_2\dot{C}H_2\xrightarrow{CH_2=CH_2} RCH_2CH_2CH_2\dot{C}H_2$$ $$R + CH_2 - CH_2 + CH_2 - \dot{C}H_2$$ Chain terminating step: The growing free radical chain consumes free radicals either by combination or by disproportionation to get polymer. #### **Combination:** $$2R + (CH_2 - CH_2)_{\overline{n}} CH_2 - CH_2 \longrightarrow$$ $R + (CH_2CH_2)_{\overline{n}} CH_2CH_2CH_2CH_2 - (CH_2CH_2)_{\overline{n}} R$ #### Disproportionation: $$2R + (CH_2 - CH_2)_{\overline{n}} CH_2 - \dot{C}H_2 \longrightarrow$$ $$R + (CH_2 - CH_2)_{\overline{n}} CH = CH_2$$ Alkene $$+ R + (CH_2 - CH_2)_{\overline{n}} CH_2 - CH_3$$ Alkane Cationic addition polymerisation: Initiated by the use of strong Lewis acids such as HF, AlCl₃, $$H_2SO_4$$, etc. $H_2SO_4 \longrightarrow H^+ + HSO_4^-$ $H^+ + CH_2 = CH_2 \longrightarrow CH_3 - CH_2$ Carbocation e.g., Polystyrene, polyvinyl ether etc. Anionic addition polymerisation: Initiated by strong bases such as NaNH₂, C₄H₉Li and Grignard reagent, etc. $$B: + CH_2 = CH_2 \longrightarrow B - CH_2 - CH_2$$ e.g., Polyacrylonitrile, polyvinyl chloride, etc. Condensation or step growth polymerisation : Condensation polymerisation normally takes place by condensation of monomeric molecules. For example, terylene is formed by removal of water molecules from ethylene glycol and terephthalic acid molecules. $$n$$ HOOC \longrightarrow COOH + HO-CH₂-CH₂-OH Terephthalic acid Ethylene glycol $\xrightarrow{420-460 \text{ K}}$ \longrightarrow CO-O-CH₂-CH₂-O Terylene (Dacron) examples condensation other of Some polymerisation are: - (i) Adipic acid + hexamethylenediamine → Nylon 6, $6 + H_2O$ - (ii) Phenol + formaldehyde \rightarrow Bakelite + H₂O - (iii)Urea + formaldehyde → Urea formaldehyde resin + H_2O ## Types of Polythene ## Polyethylene | → High density polyethylene (HDPE) Low density polyethylene (LDPE) ← - Addition or chain growth homopolymer. - By heating ethylene under high pressure (1000-2000 atm) at temperature of 350-570 K in presence of traces of oxygen or peroxide. - Free radical addition polymerisation. - Highly branched polymer. - Low density (0.92 g/cm³), low melting point (384 K) - Transparent - Chemically inert, tough but flexible, moderate tensile strength. - Used for packaging, insulation and manufacturing squeeze bottles, pipes, toys, etc. - Linear addition or chain growth homopolymer. - By heating ethylene at 333-343 K and 6-7 atm in presence of Ziegler-Natta catalyst. - Coordination polymerisation - Linear molecules, closely packed. - High density (0.97 g/cm³), high melting point (403 K). - Translucent - Chemically inert, quite harder, greater tensile strength. - Used for manufacturing containers, housewares, pipes, etc. ## PEEP INTO PREVIOUS YEARS The copolymer formed by addition polymerization of styrene and acrylonitrile in the presence of peroxide is (a) $$- \frac{\text{CN}}{\text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}} - \frac{\text{CN}}{\text{CH}_5}$$ (b) $$\begin{bmatrix} C_6H_5 & CN \\ C & -CH - CH_2 \\ CH_3 \end{bmatrix}_n$$ (c) $$-CH_{2} - CH - CH - CH_{2}$$ (d) $$\left\{ \begin{array}{c} CH_2 - CH - CH_2 - CH \\ C_6H_5 \end{array} \right\}_n$$ #### (JEE Main Online 2018) - 2. Regarding cross-linked or network polymers, which of the following statements is incorrect? - (a) They contain covalent bonds between various linear polymer chains. - (b) They are formed from bi- and tri-functional monomers. - (c) Examples are bakelite and melamine. - (d) They contain strong covalent bonds in their polymer chains. (NEET 2018) ## **Some Commercially Important Polymers** | Name of polymer | Structure | Monomer | Uses | |--|---|---|--| | Polyethylene | +CH ₂ −CH ₂ + n | CH ₂ =CH ₂ | Used as insulator,
anticorrosive, packing
material, household and
laboratory wares. | | Polystyrene | $\left(\begin{array}{c} CH-C \\ C_6H_5 \end{array} \right)_n$ | C ₆ H ₅ —CH=CH ₂ | Used as insulator, wrapping material, manufacture of toys and household articles. | | Polyvinyl
chloride | $\left(\begin{array}{c}Cl\\H_2-C\end{array}\right)_n$ | CH ₂ =CHCl | Manufacture of raincoats,
hand bags, vinyl flooring
and leather clothes. | | Polytetrafluoro
ethylene (PTFE)
or Teflon | $+CF_2-CF_2+n$ | CF ₂ =CF ₂ | As lubricant, insulator and making cooking wares. | | Poly methyl
methacrylate
(PMMA) or
Plexiglass | $ \left(\begin{array}{c} CH_3 \\ H_2 - C \\ COOC \end{array}\right)_n $ | $_{\text{CH}_{2}}^{\text{CH}_{3}}$ $_{\text{CH}_{2}}^{\text{CH}_{3}}$ | Used as substitute of glass and for making decorative materials. | | Polyacrylonitrile
(Orlon) | $\left(\begin{array}{c}C\\I\\H_2-C\end{array}\right)_n$ | CH ₂ =CHCN | In making synthetic fibres and synthetic wool. | | Styrene
butadiene
rubber (SBR or
Buna-S) | {CH₂-CH=CH-CH₂-CH₂-CH-
С ₆ H ₅) _п | | In making automobile tyres and footwears. | | Nitrile rubber
(Buna – N) | CH2-CH=CH-CH2-CH2-CH | (a) CH ₂ =CH-CH=CH ₂
(b) H ₂ C=CH-CN | In making oil seals, hoses and tank linings. | |--|---|---|---| | Neoprene | $\left\{\begin{array}{c}CI\\H_2-C=C\end{array}-C\right\}_n$ | $CH_2 = C - CH = CH_2$ CI | Used as insulator, in making conveyor belts and printing rollers. | | Polyethyl
acrylate | $ \left(\begin{array}{c} H_2-CH-\\ COOC_2 \end{array}\right)_n $ | CH ₂ =CH-COOC ₂ H ₅ | In making films, house pipes and finishing fabrics. | | Terylene
(Dacron) | +OC-()-COOCH₂CH₂O), | (a) HOOC ——————————————————————————————————— | For making films, house pipes and finishing fabrics. | | Glyptal | → OCH ₂ — CH ₂ OOC CO→ _n | (a) HOOC COOH (b) HO - CH ₂ - CH ₂ - OH | As binding material in preparation of mixed plastics and paints. | | Nylon-6 | $\left\{ H-(CH_2)_5-H \right\}_n$ | ON-H | In making fibres, plastics, tyre cords and ropes. | | Nylon-6, 6 | +NH(CH ₂) ₆ NHCO(CH ₂) ₄ CO→ _n | (a) HOOC—(CH ₂) ₄ —COOH
(b) H ₂ N—(CH ₂) ₆ —NH ₂ | In making brushes,
synthetic fibres,
parachutes, ropes and
carpets. | | Bakelite | $ \begin{pmatrix} OH & OH \\ CH_2 & CH_2 \end{pmatrix}_n $ | (a) HCHO
(b) C ₆ H ₅ OH | For making gears,
protective coating and
electrical fittings. | | Urea-
formaldehyde
resin | $+NH-CO-NH-CH_2 + \frac{1}{n}$ | (a) HCHO
(b) NH ₂ CONH ₂ | For making unbreakable cups and laminated sheets. | | Melamine-
formaldehyde
resin | H ₂ C-HN NH - CH ₂ | (a) H_2N NH_2 NH_2 NH_2 (b) HCHO | In making non-breakable plastic crockery <i>i.e.</i> , unbreakable cups and plates. | | Poly-β-hydroxy
butyrate-co-β-
hydroxy valerate
(PHBV) | $+O-H-CH_2-CO-n$ R O R O R O | ОН
(a) СН₃—СН — СН₂— СООН
ОН
(b) С₂Н₅—СНСН₂—СООН | As packaging,
orthopaedic devices and
in controlled drug release. | #### Rubber - Natural rubber : - It is obtained as latex from rubber tree. - It is highly elastic. - It is cis-1,4-Polyisoprene. - All trans configuration occurs as Gutta-Percha, which is non-elastic. #### Synthetic rubber : - It is obtained by polymerizing certain organic compounds which may have properties similar to rubber and some additional desirable properties. - Most of these polymers are derived from butadiene derivatives. For example, neoprene, Buna-S, Buna-N, thiokol, polyurethane rubber etc. - Neoprene or polychloroprene: Prepared by free radical polymerisation in presence of O₂ or peroxides. It has greater stability to aerial oxidation and it is resistant to action of vegetables or mineral oils. - Buna-S: Prepared by free radical copolymerisation of 1, 3-butadiene and styrene. It is very tough, possesses high abrasion resistance, high load bearing capacity. - Buna-N: Prepared by copolymerisation of 1, 3-butadiene and acrylonitrile in the presence of a peroxide catalyst. - Thiokol: Prepared by copolymerisation of ethylenedichloride with sodium tetrasulphide in presence of magnesium hydroxide. - Vulcanization of rubber: It is a process of treating natural rubber with sulphur and an appropriate additive at a temperature range of 373 to 415 K, to modify its properties. - On vulcanization sulphur forms cross-links at the reactive sites of the double bonds and gives mechanical strength to the rubber. - The extent of hardness or toughness, however, depends upon the amount of sulphur added. Thus, about 5% sulphur is used for making tyre rubber, 20-25% sulphur for making ebonite and 30% sulphur for making battery case rubber. ## **Biodegradable Polymers** Biopolymers disintegrate by enzymatic hydrolysis and to some extent by oxidation and hence are biodegradable. - Synthetic polymers are non-biodegradable and hence create disposal problem. To overcome this, biodegradable synthetic polymers have been developed. - Poly-β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV): It is a copolymer of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid connected with ester linkages. - Used in speciality packaging, orthopaedic devices and in controlled drug release. - Dextron: A copolymer of glycollic acid and lactic acid (90: 10) was the first biodegradable polyester used for stitching of wounds. - Nylon-2-Nylon-6: It is a step-growth polyamide copolymer of glycine and ∈ -amino caproic acid. $$nH_2N-CH_2-COOH + nH_2N-(CH_2)_5-COOH \xrightarrow{\Delta}$$ Glycine $\leftarrow -Aminocaproic acid$ $\rightarrow -C$ #### **Molecular Mass of Polymers** There are two types of average molecular weight in case of polymers: - (a) \overline{M}_n = Number average molecular weight - (b) \overline{M}_{w} = Weight average molecular weight - (a) Number average molecular weight (\bar{M}_n) $$\bar{M}_n = \frac{\text{Total weight of the molecules}}{\text{Total number of molecules}}$$ $$\bar{M}_n = \frac{n_1 M_1 + n_2 M_2 + n_3 M_3 + \dots}{n_1 + n_2 + n_3 + \dots}$$ $$\bar{M}_n = \frac{\sum n_i M_i}{\sum n_i}$$ \overline{M}_n is generally determined by osmotic pressure method. (b) Weight average molecular weight (\bar{M}_w) $$\overline{M}_{w} = \frac{w_{1}M_{1} + w_{2}M_{2} + w_{3}M_{3} + \dots}{w_{1} + w_{2} + w_{3} + \dots}$$ [weight (w) = no. of moles (n) × molecular weight (M)] \overline{M}_w is generally determined by the light scattering method. #### PDI (Polydispersity Index) The ratio of the \overline{M}_w and \overline{M}_n is called PDI $$PDI = \frac{\overline{M}_w}{\overline{M}_w}$$ In natural polymers, which are generally monodispersed, the P.D.I. is unity ($\bar{M}_w = \bar{M}_n$). In synthetic polymers, which are poly-dispersed, P.D.I. is greater than unity because \bar{M}_w is always higher than \bar{M}_n . ## PEEP INTO PREVIOUS YEARS - 3. The biodegradable polymer is - (a) buna-S - (b) nylon-6,6 - (c) nylon-2-nylon 6 - (d) nylon-6. #### (NEET 2019) - 4. Choose the correct option(s) from the following - (a) Teflon is prepared by heating tetrafluoroethene in presence of a persulphate catalyst at high pressure. - (b) Natural rubber is polyisoprene containing *trans* alkene units. - (c) Nylon-6 has amide linkages. - (d) Cellulose has only α -D-glucose units that are joined by glycosidic linkages. #### (JEE Advanced 2019) 5. Which of the following is a biodegradable polymer? (a) $$\left[\text{HN-(CH}_2)_6 \text{NHCO} - (\text{CH}_2)_4 - \overset{\text{O}}{\mathbf{C}} \right]_n$$ (b) $$\left[\text{HN} - (\text{CH}_2)_5 \text{CONH} - \text{CH}_2 - \overset{\text{I}}{\mathbf{C}} \right]_n$$ (c) $$\left\{ \text{HN} - (\text{CH}_2)_5 - \text{C} \right\}_n$$ (d) $$\left[\begin{array}{c} O \\ C \end{array} \right]_{n} = \left[\end{array}$$ #### (JEE Main Online 2017) 6. Which one of the following structures represents nylon 6, 6 polymer? (a) $$\begin{pmatrix} H_2 & H & H_2 & H \\ C & C & C & C \\ NH_2 & CH_3 \end{pmatrix}$$ (b) $\begin{pmatrix} H_2 & H & H_2 & H \\ C & C & C & C \\ NH_2 & NH_2 \end{pmatrix}$ (6) $\begin{pmatrix} H_2 & H & H_2 & H \\ NH_2 & NH_2 \end{pmatrix}$ (6) $\begin{pmatrix} H_2 & H & H_2 & H \\ NH_2 & NH_2 \end{pmatrix}$ (6) # $(d) \begin{pmatrix} O \\ H_{2} \\ C \\ H_{2} \end{pmatrix} C \begin{pmatrix} H_{2} \\ N + CH_{2})_{6} - NH \end{pmatrix}$ (NEET-II 2016) ## POINTS FOR EXTRA SCORING - Coordination Polymerisation: It is the process in which the polymerisation occurs through formation of coordination complex. - Isotactic (meaning-same order): In this type of arrangement all the methyl groups of propylene lie on the same side. > Syndiotactic (meaning-alternating order): In this case the methyl groups alternate regularly on the opposite side of chain. $$\begin{array}{c|c} R & R & R & R & R \\ \hline R & R & R & R & R \\ R & R & R & R & R \\ \hline R & R & R & R & R \\ R & R & R &$$ Atactic (meaning-no order): In this type of arrangement no particular order is followed. - Polyurethanes. These are the condensation polymers of toluene-2, 4-diisocyanate and ethylene glycol. - ➤ **Ebonite**: It is a highly vulcanised rubber having about 20–30% of sulphur. - Kevlar: It is a polyamide obtained by condensation copolymerisation and used in making light weight bullet-proof vests. - Nomex : A condensation polyamide used in protective clothing for fire resistance. - Lexan: A condensation copolymerisation polycarbonate (polyester) with unusually high impact strength, used for making bullet proof windows and safety helmets. - Rayon (artificial silk): It is chemically similar to cotton but shines like silk. Artificial silk is a polysaccharide while natural silk is a protein (polyamide).