

Brush up your concepts to get high rank in NEET/JEE (Main and Advanced) by reading this column. This specially designed column is updated year after year by a panel of highly qualified teaching experts well-tuned to the requirements of these Entrance Tests.

Polymers | Chemistry in Everyday Life

Polymers

POLYMERS

The process of formation of a bigger molecule from any simpler molecules through mutual bonding is called polymerisation. The simpler molecules undergoing polymerisation are known as monomers and the bigger molecule formed is called a polymer.

$$nCH_2 = CH_2 \xrightarrow{\text{Polymerisation}} + CH_2 - CH_2 - \frac{1}{n}$$

Ethene (Monomer) Polythene (Polymer)

Homopolymers: Polymers made up of only one type of monomers *e.g.*, polythene, polypropylene.

$$nCH_3$$
— $CH = CH_2$

Polymerisation

Polypropylene

Polypropylene

Copolymers: Polymers made up of two or more types of monomers e.g., nylon 6,6. The process of formation of copolymer is called copolymerisation. $nNH_2(CH_2)_6NH_2 + nHOOC(CH_2)_4COOH$

Copolymers have better physical mechanical properties, which can be changed by varying the amount of each monomer.

Classification of Polymers

Types of Polymerisation Reaction

Addition polymerisation: In addition polymerisation, the unsaturated monomeric molecules undergo repeated addition reactions in the presence of catalysts like O₂, organic peroxides. Some examples of addition polymers are polythene from ethylene, polypropylene from propylene, polyisoprene from isoprene. etc.

(i)
$$nCH_2 = CH \longrightarrow +CH_2 - CH +_n$$

 Cl Cl Cl
Vinyl chloride Polyvinyl chloride

(ii)
$$nCH_2=C-CH=CH_2\rightarrow \{-CH_2-C=CH-CH_2\}_n$$

 CH_3
 CH_3

Mechanism of Addition Polymerisation or Chain Growth Polymerisation

- Free radical addition polymerisation: This is initiated by adding a substance which generate free radicals called an initiator e.g., benzoyl peroxide.
 - Chain initiation: Peroxide molecules break up and generate free radicals which act as initiators and react with monomer molecules

and generate a larger free radical or growing chain.

$$R - \overset{O}{C} - \overset{O}{O} \overset{O}{C} - \overset{O}{C} - R \xrightarrow{\Delta} 2R - \overset{O}{C} - O$$

$$2\dot{R} + 2CO_{2}$$

$$R+CH_2$$
 $\rightarrow R-CH_2-\dot{C}H_2$

Chain propagating step: The free radical thus formed adds to the double bond of the monomer to form larger free radical.

$$RCH_2\dot{C}H_2\xrightarrow{CH_2=CH_2} RCH_2CH_2CH_2\dot{C}H_2$$

$$R + CH_2 - CH_2 + CH_2 - \dot{C}H_2$$

Chain terminating step: The growing free radical chain consumes free radicals either by combination or by disproportionation to get polymer.

Combination:

$$2R + (CH_2 - CH_2)_{\overline{n}} CH_2 - CH_2 \longrightarrow$$

 $R + (CH_2CH_2)_{\overline{n}} CH_2CH_2CH_2CH_2 - (CH_2CH_2)_{\overline{n}} R$

Disproportionation:

$$2R + (CH_2 - CH_2)_{\overline{n}} CH_2 - \dot{C}H_2 \longrightarrow$$

$$R + (CH_2 - CH_2)_{\overline{n}} CH = CH_2$$
Alkene
$$+ R + (CH_2 - CH_2)_{\overline{n}} CH_2 - CH_3$$
Alkane

Cationic addition polymerisation: Initiated by the use of strong Lewis acids such as HF, AlCl₃,

$$H_2SO_4$$
, etc.
 $H_2SO_4 \longrightarrow H^+ + HSO_4^-$
 $H^+ + CH_2 = CH_2 \longrightarrow CH_3 - CH_2$
Carbocation

e.g., Polystyrene, polyvinyl ether etc.

Anionic addition polymerisation: Initiated by strong bases such as NaNH₂, C₄H₉Li and Grignard reagent, etc.

$$B: + CH_2 = CH_2 \longrightarrow B - CH_2 - CH_2$$

e.g., Polyacrylonitrile, polyvinyl chloride, etc.

Condensation or step growth polymerisation : Condensation polymerisation normally takes place by condensation of monomeric molecules. For example, terylene is formed by removal of water molecules from ethylene glycol and terephthalic acid molecules.

$$n$$
HOOC \longrightarrow COOH + HO-CH₂-CH₂-OH

Terephthalic acid Ethylene glycol

 $\xrightarrow{420-460 \text{ K}}$ \longrightarrow CO-O-CH₂-CH₂-O

Terylene (Dacron) examples condensation other of Some polymerisation are:

- (i) Adipic acid + hexamethylenediamine → Nylon 6, $6 + H_2O$
- (ii) Phenol + formaldehyde \rightarrow Bakelite + H₂O
- (iii)Urea + formaldehyde → Urea formaldehyde resin + H_2O

Types of Polythene

Polyethylene | → High density polyethylene (HDPE) Low density polyethylene (LDPE) ←

- Addition or chain growth homopolymer.
- By heating ethylene under high pressure (1000-2000 atm) at temperature of 350-570 K in presence of traces of oxygen or peroxide.
- Free radical addition polymerisation.
- Highly branched polymer.
- Low density (0.92 g/cm³), low melting point (384 K)
- Transparent
- Chemically inert, tough but flexible, moderate tensile strength.
- Used for packaging, insulation and manufacturing squeeze bottles, pipes, toys, etc.

- Linear addition or chain growth homopolymer.
- By heating ethylene at 333-343 K and 6-7 atm in presence of Ziegler-Natta catalyst.
- Coordination polymerisation
- Linear molecules, closely packed.
- High density (0.97 g/cm³), high melting point (403 K).
- Translucent
- Chemically inert, quite harder, greater tensile strength.
- Used for manufacturing containers, housewares, pipes, etc.

PEEP INTO PREVIOUS YEARS

 The copolymer formed by addition polymerization of styrene and acrylonitrile in the presence of peroxide is

(a)
$$- \frac{\text{CN}}{\text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}} - \frac{\text{CN}}{\text{CH}_5}$$

(b)
$$\begin{bmatrix} C_6H_5 & CN \\ C & -CH - CH_2 \\ CH_3 \end{bmatrix}_n$$

(c)
$$-CH_{2} - CH - CH - CH_{2}$$

(d)
$$\left\{ \begin{array}{c} CH_2 - CH - CH_2 - CH \\ C_6H_5 \end{array} \right\}_n$$

(JEE Main Online 2018)

- 2. Regarding cross-linked or network polymers, which of the following statements is incorrect?
 - (a) They contain covalent bonds between various linear polymer chains.
 - (b) They are formed from bi- and tri-functional monomers.
 - (c) Examples are bakelite and melamine.
 - (d) They contain strong covalent bonds in their polymer chains.

(NEET 2018)

Some Commercially Important Polymers

Name of polymer	Structure	Monomer	Uses
Polyethylene	+CH ₂ −CH ₂ + n	CH ₂ =CH ₂	Used as insulator, anticorrosive, packing material, household and laboratory wares.
Polystyrene	$\left(\begin{array}{c} CH-C \\ C_6H_5 \end{array} \right)_n$	C ₆ H ₅ —CH=CH ₂	Used as insulator, wrapping material, manufacture of toys and household articles.
Polyvinyl chloride	$\left(\begin{array}{c}Cl\\H_2-C\end{array}\right)_n$	CH ₂ =CHCl	Manufacture of raincoats, hand bags, vinyl flooring and leather clothes.
Polytetrafluoro ethylene (PTFE) or Teflon	$+CF_2-CF_2+n$	CF ₂ =CF ₂	As lubricant, insulator and making cooking wares.
Poly methyl methacrylate (PMMA) or Plexiglass	$ \left(\begin{array}{c} CH_3 \\ H_2 - C \\ COOC \end{array}\right)_n $	$_{\text{CH}_{2}}^{\text{CH}_{3}}$ $_{\text{CH}_{2}}^{\text{CH}_{3}}$	Used as substitute of glass and for making decorative materials.
Polyacrylonitrile (Orlon)	$\left(\begin{array}{c}C\\I\\H_2-C\end{array}\right)_n$	CH ₂ =CHCN	In making synthetic fibres and synthetic wool.
Styrene butadiene rubber (SBR or Buna-S)	{CH₂-CH=CH-CH₂-CH₂-CH- С ₆ H ₅) _п		In making automobile tyres and footwears.

Nitrile rubber (Buna – N)	CH2-CH=CH-CH2-CH2-CH	(a) CH ₂ =CH-CH=CH ₂ (b) H ₂ C=CH-CN	In making oil seals, hoses and tank linings.
Neoprene	$\left\{\begin{array}{c}CI\\H_2-C=C\end{array}-C\right\}_n$	$CH_2 = C - CH = CH_2$ CI	Used as insulator, in making conveyor belts and printing rollers.
Polyethyl acrylate	$ \left(\begin{array}{c} H_2-CH-\\ COOC_2 \end{array}\right)_n $	CH ₂ =CH-COOC ₂ H ₅	In making films, house pipes and finishing fabrics.
Terylene (Dacron)	+OC-()-COOCH₂CH₂O),	(a) HOOC ———————————————————————————————————	For making films, house pipes and finishing fabrics.
Glyptal	→ OCH ₂ — CH ₂ OOC CO→ _n	(a) HOOC COOH (b) HO - CH ₂ - CH ₂ - OH	As binding material in preparation of mixed plastics and paints.
Nylon-6	$\left\{ H-(CH_2)_5-H \right\}_n$	ON-H	In making fibres, plastics, tyre cords and ropes.
Nylon-6, 6	+NH(CH ₂) ₆ NHCO(CH ₂) ₄ CO→ _n	(a) HOOC—(CH ₂) ₄ —COOH (b) H ₂ N—(CH ₂) ₆ —NH ₂	In making brushes, synthetic fibres, parachutes, ropes and carpets.
Bakelite	$ \begin{pmatrix} OH & OH \\ CH_2 & CH_2 \end{pmatrix}_n $	(a) HCHO (b) C ₆ H ₅ OH	For making gears, protective coating and electrical fittings.
Urea- formaldehyde resin	$+NH-CO-NH-CH_2 + \frac{1}{n}$	(a) HCHO (b) NH ₂ CONH ₂	For making unbreakable cups and laminated sheets.
Melamine- formaldehyde resin	H ₂ C-HN NH - CH ₂	(a) H_2N NH_2 NH_2 NH_2 (b) HCHO	In making non-breakable plastic crockery <i>i.e.</i> , unbreakable cups and plates.
Poly-β-hydroxy butyrate-co-β- hydroxy valerate (PHBV)	$+O-H-CH_2-CO-n$ R O R O R O	ОН (a) СН₃—СН — СН₂— СООН ОН (b) С₂Н₅—СНСН₂—СООН	As packaging, orthopaedic devices and in controlled drug release.

Rubber

- Natural rubber :
 - It is obtained as latex from rubber tree.
 - It is highly elastic.
 - It is cis-1,4-Polyisoprene.
 - All trans configuration occurs as Gutta-Percha, which is non-elastic.

Synthetic rubber :

- It is obtained by polymerizing certain organic compounds which may have properties similar to rubber and some additional desirable properties.
- Most of these polymers are derived from butadiene derivatives. For example, neoprene, Buna-S, Buna-N, thiokol, polyurethane rubber etc.
- Neoprene or polychloroprene: Prepared by free radical polymerisation in presence of O₂ or peroxides. It has greater stability to aerial oxidation and it is resistant to action of vegetables or mineral oils.
- Buna-S: Prepared by free radical copolymerisation of 1, 3-butadiene and styrene.
 It is very tough, possesses high abrasion resistance, high load bearing capacity.
- Buna-N: Prepared by copolymerisation of 1, 3-butadiene and acrylonitrile in the presence of a peroxide catalyst.
- Thiokol: Prepared by copolymerisation of ethylenedichloride with sodium tetrasulphide in presence of magnesium hydroxide.
- Vulcanization of rubber: It is a process of treating natural rubber with sulphur and an appropriate additive at a temperature range of 373 to 415 K, to modify its properties.
 - On vulcanization sulphur forms cross-links at the reactive sites of the double bonds and gives mechanical strength to the rubber.
 - The extent of hardness or toughness, however, depends upon the amount of sulphur added. Thus, about 5% sulphur is used for making tyre rubber, 20-25% sulphur for making ebonite and 30% sulphur for making battery case rubber.

Biodegradable Polymers

 Biopolymers disintegrate by enzymatic hydrolysis and to some extent by oxidation and hence are biodegradable.

- Synthetic polymers are non-biodegradable and hence create disposal problem. To overcome this, biodegradable synthetic polymers have been developed.
- Poly-β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV): It is a copolymer of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid connected with ester linkages.
 - Used in speciality packaging, orthopaedic devices and in controlled drug release.
- Dextron: A copolymer of glycollic acid and lactic acid (90: 10) was the first biodegradable polyester used for stitching of wounds.
- Nylon-2-Nylon-6: It is a step-growth polyamide copolymer of glycine and ∈ -amino caproic acid.

$$nH_2N-CH_2-COOH + nH_2N-(CH_2)_5-COOH \xrightarrow{\Delta}$$
Glycine

 $\leftarrow -Aminocaproic acid$
 $\rightarrow -C$
 $\rightarrow -C$

Molecular Mass of Polymers

There are two types of average molecular weight in case of polymers:

- (a) \overline{M}_n = Number average molecular weight
- (b) \overline{M}_{w} = Weight average molecular weight
- (a) Number average molecular weight (\bar{M}_n)

$$\bar{M}_n = \frac{\text{Total weight of the molecules}}{\text{Total number of molecules}}$$

$$\bar{M}_n = \frac{n_1 M_1 + n_2 M_2 + n_3 M_3 + \dots}{n_1 + n_2 + n_3 + \dots}$$

$$\bar{M}_n = \frac{\sum n_i M_i}{\sum n_i}$$

 \overline{M}_n is generally determined by osmotic pressure method.

(b) Weight average molecular weight (\bar{M}_w)

$$\overline{M}_{w} = \frac{w_{1}M_{1} + w_{2}M_{2} + w_{3}M_{3} + \dots}{w_{1} + w_{2} + w_{3} + \dots}$$

[weight (w) = no. of moles (n) × molecular weight (M)] \overline{M}_w is generally determined by the light scattering method.

PDI (Polydispersity Index)

The ratio of the \overline{M}_w and \overline{M}_n is called PDI

$$PDI = \frac{\overline{M}_w}{\overline{M}_w}$$

In natural polymers, which are generally monodispersed, the P.D.I. is unity ($\bar{M}_w = \bar{M}_n$).

In synthetic polymers, which are poly-dispersed, P.D.I. is greater than unity because \bar{M}_w is always higher than \bar{M}_n .

PEEP INTO PREVIOUS YEARS

- 3. The biodegradable polymer is
 - (a) buna-S
- (b) nylon-6,6
- (c) nylon-2-nylon 6
- (d) nylon-6.

(NEET 2019)

- 4. Choose the correct option(s) from the following
 - (a) Teflon is prepared by heating tetrafluoroethene in presence of a persulphate catalyst at high pressure.
 - (b) Natural rubber is polyisoprene containing *trans* alkene units.
 - (c) Nylon-6 has amide linkages.
 - (d) Cellulose has only α -D-glucose units that are joined by glycosidic linkages.

(JEE Advanced 2019)

5. Which of the following is a biodegradable polymer?

(a)
$$\left[\text{HN-(CH}_2)_6 \text{NHCO} - (\text{CH}_2)_4 - \overset{\text{O}}{\mathbf{C}} \right]_n$$

(b)
$$\left[\text{HN} - (\text{CH}_2)_5 \text{CONH} - \text{CH}_2 - \overset{\text{I}}{\mathbf{C}} \right]_n$$

(c)
$$\left\{ \text{HN} - (\text{CH}_2)_5 - \text{C} \right\}_n$$

(d)
$$\left[\begin{array}{c} O \\ C \end{array} \right]_{n} = \left[\begin{array}{c} O \\ C \end{array}$$

(JEE Main Online 2017)

6. Which one of the following structures represents nylon 6, 6 polymer?

(a)
$$\begin{pmatrix} H_2 & H & H_2 & H \\ C & C & C & C \\ NH_2 & CH_3 \end{pmatrix}$$
 (b) $\begin{pmatrix} H_2 & H & H_2 & H \\ C & C & C & C \\ NH_2 & NH_2 \end{pmatrix}$ (6) $\begin{pmatrix} H_2 & H & H_2 & H \\ NH_2 & NH_2 \end{pmatrix}$ (6) $\begin{pmatrix} H_2 & H & H_2 & H \\ NH_2 & NH_2 \end{pmatrix}$ (6)

$(d) \begin{pmatrix} O \\ H_{2} \\ C \\ H_{2} \end{pmatrix} C \begin{pmatrix} H_{2} \\ N + CH_{2})_{6} - NH \end{pmatrix}$

(NEET-II 2016)

POINTS FOR EXTRA SCORING

- Coordination Polymerisation: It is the process in which the polymerisation occurs through formation of coordination complex.
- Isotactic (meaning-same order): In this type of arrangement all the methyl groups of propylene lie on the same side.

> Syndiotactic (meaning-alternating order): In this case the methyl groups alternate regularly on the opposite side of chain.

$$\begin{array}{c|c}
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
\hline
R & R & R & R & R \\
R & R & R & R & R \\
\hline
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R & R & R \\
R & R & R &$$

Atactic (meaning-no order): In this type of arrangement no particular order is followed.

- Polyurethanes. These are the condensation polymers of toluene-2, 4-diisocyanate and ethylene glycol.
- ➤ **Ebonite**: It is a highly vulcanised rubber having about 20–30% of sulphur.
- Kevlar: It is a polyamide obtained by condensation copolymerisation and used in making light weight bullet-proof vests.
- Nomex : A condensation polyamide used in protective clothing for fire resistance.
- Lexan: A condensation copolymerisation polycarbonate (polyester) with unusually high impact strength, used for making bullet proof windows and safety helmets.
- Rayon (artificial silk): It is chemically similar to cotton but shines like silk. Artificial silk is a polysaccharide while natural silk is a protein (polyamide).