Brush up your concepts to get high rank in NEET/JEE (Main and Advanced) by reading this column. This specially designed column is updated year after year by a panel of highly qualified teaching experts well-tuned to the requirements of these Entrance Tests. # **Principles Related to Practical Chemistry** ## QUALITATIVE SALT ANALYSIS Identification of acidic and basic radicals in a salt can be carried out by performing various tests. ## **Preliminary Tests** #### Flame Test: | Greenish
Cu ²⁺ ← blue | Salt with 1-2 drops of conc. HCl is introduced | Brick red Ca ²⁺ | |--|---|--------------------------------| | K ⁺ ← Lilac
Golden
Golden
yellow | in the non-luminous
(oxidising part) flame
of the Bunsen burner | Apple green → Ba ²⁺ | | Na ⁺ ← yellow | of the Bunsen burner using platinum wire. | Crimson red Sr ²⁺ | #### Borax bead test When borax is heated on a loop of Pt wire then colourless glassy bead of sodium metaborate and boric anhydride is formed. $$Na_2B_4O_7 \cdot 10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta} \underbrace{2NaBO_2 + B_2O_3}_{Glassy\ beads}$$ Coloured salts are then heated on the glassy bead to form coloured metaborate. | 36.3 | Colour in | | | | | |--------------|-----------|------------|----------------|-----------|--| | Metal Oxidis | | sing flame | Reducing flame | | | | Copper | Hot | Cold | Hot | Cold | | | | Green | Blue | Colourless | Brown red | | | Iron | Brown-
yellow | Pale
yellow | Bottle
green | Bottle
green | |-----------|------------------|-----------------|-----------------|-----------------| | Chromium | Green | Green | Green | Green | | Cobalt | Blue | Blue | Blue | Blue | | Manganese | Violet | Amethyst
red | Colourless | Colourless | | Nickel | Red-
brown | Brown | Grey | Grey | #### **Identification of Acidic Radicals** #### First Group (I): # Salt + dil. HCl ## Effervescence or evolution of gas shows presence of group I acidic radicals. Colourless gas with suffocating smell with yellow ppt. of sulphur Pass through $$K_2Cr_2O_7$$ Blackish green solution \longrightarrow $S_2O_3^{2-}$ confirmed Brown gas (NO₂) Starch iodide paper NO₂ confirmed Colourless gas with vinegar smell (CH₃COO⁻ may be present) Salt solution + FeCl₃ (neutral) → (CH₃COO)₃Fe → CH₃COO⁻ confirmed Blood red colour solution Colourless gas with suffocating smell (SO₂) Heat and pass through $K_2Cr_2O_7$ Solution turns green due to $Cr_2(SO_4)_3 \longrightarrow SO_3^{2-} \text{ confirmed}$ ## Second Group (II): Salt + conc. H₂SO₄ Effervescence or evolution of gases indicates the presence of group II acidic radicals. | Gas | Radical | Observations and Reactions | |--|--------------------------------|---| | HCl
(Colourless
gas,
pungent
smell) | Chloride
(Cl ⁻) | $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl^{\uparrow}$
Salt
$NH_4OH + HCl \rightarrow NH_4Cl^{\uparrow} + H_2O$
White dense
fumes | | Br ₂
(Brown
fumes) | Bromide
(Br ⁻) | $\begin{array}{l} \text{NaBr} + \text{H}_2\text{SO}_4 \longrightarrow \text{NaHSO}_4 + \text{HBr} \\ \text{Salt} \\ 2\text{HBr} + \text{H}_2\text{SO}_4 \longrightarrow \text{Br}_2 \uparrow + 2\text{H}_2\text{O} + \text{SO}_2 \\ \text{Brown} \end{array}$ | | I ₂
(Deep violet
gas) | Iodide
(I ⁻) | $ \begin{array}{l} 2\text{KI} + 2\text{H}_2\text{SO}_4 \rightarrow 2\text{KHSO}_4 + 2\text{HI} \\ \text{Salt} \\ 2\text{HI} + \text{H}_2\text{SO}_4 \rightarrow \text{I}_2 \\ \text{Violet} \end{array} $ | | NO ₂
(Light
brown gas,
pungent
smell) | Nitrate
(NO ₃) | $NaNO_3 + H_2SO_4 \rightarrow$ $Salt$ $NaHSO_4 + HNO_3$ $4HNO_3 \rightarrow 2H_2O + 4NO_2 \uparrow + O_2 \uparrow$ $Light brown$ $fumes$ | $$\begin{array}{c|c} CO + \\ CO_2 \\ (Colourless, \\ odourless \\ gas) \end{array} \begin{array}{c} Oxalate \\ (C_2O_4^{2-}) \end{array} \begin{array}{c} Na_2C_2O_4 + H_2SO_4 \rightarrow \\ Salt \\ Na_2SO_4 + H_2C_2O_4 \\ H_2C_2O_4 + H_2SO_4 \rightarrow \\ CO + CO_2 + H_2O_4 \\ Burns \ with \quad Turns \ lime \\ blue \ flame \end{array}$$ #### Confirmatory Tests for Group II : #### Third Group (III): These anions are identified by their characteristic chemical reactions. #### **Identification of Basic Radicals** • Separation of basic radicals into different groups : | Basic radicals of | Group
reagent | Precipitated as | Explanation | |---|------------------|--|--| | Group I Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺ | dil. HCl | AgCl, PbCl ₂ , Hg ₂ Cl ₂
(All white) | K_{sp} values of their chlorides are low, hence $K_{ip} > K_{sp}$ and they get precipitated. | | Group II
Hg ²⁺ , Pb ²⁺ , Bi ³⁺ ,
Cu ²⁺ , Cd ²⁺ , As ³⁺ ,
Sb ³⁺ , Sn ²⁺ , Sn ⁴⁺ | H ₂ S in presence of dil. HCl | (Black); CdS, As ₂ S ₃ , SnS ₂ | HCl (with common H^+ ion) decreases the ionization of H_2S which gives low $[S^{2^-}]$. Hence, only group II sulphides having low K_{sp} values are precipitated. | |--|---|---|--| | Group III
Fe ³⁺ , Cr ³⁺ , Al ³⁺ | * | Fe(OH) ₃ (Reddish brown),
Cr(OH) ₃ (Green),
Al(OH) ₃ (White) | $\mathrm{NH_4Cl}$ (with common $\mathrm{NH_4}^+$ ion) decreases the ionization of $\mathrm{NH_4OH}$ giving low $\mathrm{[OH^-]}$. Hence, only group III hydroxides having low K_{sp} values are precipitated. | | Group IV
Zn ²⁺ , Mn ²⁺ , Co ²⁺ ,
Ni ²⁺ | | ZnS (Greenish white),
MnS (Buff),
CoS, NiS (Black), | Basic medium increases the ionization of H_2S , thus increasing $[S^{2-}]$, hence precipitation of group IV sulphides having high K_{sp} values occurs. | | Group V
Ba ²⁺ , Sr ²⁺ , Ca ²⁺ | (NH ₄) ₂ CO ₃
in presence
of NH ₄ OH | BaCO ₃ , SrCO ₃ , CaCO ₃ (All white) | K_{sp} values of their carbonates are less than that of group VI (Mg ²⁺) hence, group V is precipitated before Mg ²⁺ . | | Group VI
Mg ²⁺ | Na ₂ HPO ₄
in presence
of NH ₄ OH | Mg(NH ₄)PO ₄ (White) | _ | | Zero
NH ₄ ⁺ | NaOH | Ammonia gas is evolved. | Tested independently from original solution. | # QUANTITATIVE ANALYSIS ### **Titration** The process of addition of the known solution from the burette to the measured volume of solution of the substance to be estimated until the reaction between the two is just complete. #### **Acid-Base Titration** - When the strength of an acid is determined with the help of a standard solution of base, it is known as acidimetry. - When the strength of a base is determined with the help of a standard solution of an acid, it is known as alkalimetry. These titrations involve neutralisation of an acid with an alkali. $$HA + BOH \longrightarrow BA + H_2O$$ Acid Alkali Salt Water # **Calculations Involving in Volumetric Analysis** Number of equivalents = Normality $(N) \times \text{Volume}(V)$ (in L) Number of equivalents of titrate *i.e.*, $N_1V_1 = N_2V_2 =$ Number of equivalents of titrant The above equation is known as normality equation. Similarly, molarity equation is also given but it is usually $$M_1V_1 = M_2V_2$$; Normality = Molarity × n , where n = valency factor applicable for dilution of a solution. Thus, $N_1V_1 = N_2V_2$ can be written as: $M_1V_1n_1 = M_2V_2n_2$ #### **Indicator** A substance which helps in physical detection of completion of the titration is called indicator. | Some common acid-base indicators | | | | |---|---------------------|------------|--------------------------------------| | Indicator colour change, from acidic to alkaline medium | pK _(ind) | pH range | Example of titration | | Methyl orange (red \Rightarrow yellow) | 3.7 | 3.2 – 4.4 | Weak base vs strong acid titration | | Methyl red (red \Rightarrow yellow) | 5.1 | 4.2 – 6.3 | Weak base vs strong acid titration | | Phenol red (yellow \Rightarrow red) | 7.9 | 6.4 – 8.2 | Strong acid vs strong base titration | | Phenolphthalein (colourless ⇒ pink) | 9.3 | 8.3 – 10.0 | Weak acid vs strong base titration | # PEEP INTO PREVIOUS YEARS - 1. The cation that will not be precipitated by H₂S in the presence of dil. HCl is - (a) Cu²⁺ - (b) Pb²⁺ - (c) As^{3+} - (d) Co²⁺ ### (Online JEE Main 2015) - **2.** For standardising NaOH solution, which of the following is used as a primary standard? - (a) Oxalic acid - (b) Ferrous ammonium sulphate - (c) Sodium tetraborate - (d) Dil. HCl (Online JEE Main 2018) **3.** An alkali is titrated against an acid with methyl orange as indicator, which of the following is a correct combination? | Base | Acid | End point | |------------|--------|-----------------------| | (a) Weak | Strong | Colourless to pink | | (b) Strong | Strong | Pinkish red to yellow | - (c) Weak Strong Yellow to pinkish red (d) Strong Strong Pink to colourless (JEE Main 2018) - 4. Which will make basic buffer? - (a) 100 mL of 0.1 M HCl + 100 mL of 0.1 M NaOH - (b) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M CH₃COOH - (c) 100 mL of 0.1 M CH₃COOH + 100 mL of 0.1 M NaOH - (d) 100 mL of 0.1 M HCl + 200 mL of 0.1 M NH₄OH (NEET 2019) # QUALITATIVE ANALYSIS OF ORGANIC COMPOUNDS ## **Detection of N, S, Cl in Organic Compounds** Lassaigne's extract: A small pellet of metallic sodium together with a little amount of the substance is heated to red hot in an ignition tube. It is then suddenly plunged into about 10 mL of distilled water in a China dish. The mixture is boiled well and filtered. Filtrate is known as Lassaigne's extract (L.E.). | | <u> </u> | / Kilowii da i | Lassaignes extract (L.E.). | |-------------------------|--|--|--| | Element | Detection | Confirmatory test | Reactions | | Nitrogen | Lassaigne's extract (L.E.)
Na + C + N $\stackrel{\Delta}{\longrightarrow}$ NaCN | | $FeSO_4 + 2NaOH \longrightarrow Fe(OH)_2 + Na_2SO_4$
$Fe(OH)_2 + 6NaCN \longrightarrow$ | | | (L.E.) | Gives blue or green colour. | Na ₄ [Fe(CN) ₆] + 2NaOH | | | | | $Na_4[Fe(CN)_6] + FeCl_3 \xrightarrow{HCl}$
$NaFe[Fe(CN)_6] + 3NaCl$ | | | | | Prussian blue | | | | | or $3Na_4[Fe(CN)_6] + 4FeCl_3 \longrightarrow$ | | | | | Fe ₄ [Fe(CN) ₆] ₃ + 12NaCl
Prussian blue | | Sulphur | $2Na + S \xrightarrow{\Delta} Na_2S$ | (i) L.E. + sodium | (i) $Na_2S + Na_2[Fe(CN)_5NO] \longrightarrow$ | | | (L.E.) | nitroprusside | Sodium nitroprusside
Na ₄ [Fe(CN) ₅ NOS] | | | | A deep violet colour.
(ii) L.E. + CH ₃ COOH | Deep violet | | | | + (CH ₃ COO) ₂ Pb | (ii) $Na_2S + (CH_3COO)_2Pb \xrightarrow{CH_3COOH}$ | | | | Gives a black ppt. | $PbS \downarrow + 2CH_3COONa$ | | | | 11 | Black ppt. | | Halogens | $Na + X \xrightarrow{\Delta} NaX$ | $L.E. + HNO_3 + AgNO_3$ | $NaX + AgNO_3 \xrightarrow{HNO_3} AgX \downarrow + NaNO_3$ | | | (L.E.) | (i) White ppt. soluble in aq. | White ppt. | | | (X = Cl, Br, I) | NH ₃ (or NH ₄ OH) confirms Cl. | $AgCl + 2NH_4OH_{(aq.)} \longrightarrow$ | | | | (ii) Pale yellow ppt. partially soluble in aq. NH ₃ (or | [Ag(NH3)2]Cl + 2H2O | | | | NH ₄ OH) confirms Br. | Soluble | | | | (iii) Yellow ppt. insoluble | | | | | in aq. NH ₃ (or NH ₄ OH) | | | | | confirms I. | | | Nitrogen | $Na + C + N + S \xrightarrow{\Delta}$ | | 3 NaSCN + FeCl ₃ \longrightarrow [Fe(SCN) ₃] + 3 NaCl | | and sulphur
together | NaSCN | instead of green or blue colour, blood red colour- | Blood red colour | | together | (L.E.)
Sodium | ation confirms the presence | | | | thiocyanate | of N and S both. | | # QUANTITATIVE ANALYSIS OF ORGANIC COMPOUNDS | Element | Method | |------------------------|---| | Carbon and
Hydrogen | Liebig's Combustion method: A known mass of an organic compound is burnt in the presence of excess of O_2 and CuO . $C_xH_y + \left(x + \frac{y}{4}\right)O_2 \xrightarrow{\Delta} xCO_2 + \frac{y}{2}H_2O$ CO_2 evolved is absorbed by conc. solution of KOH or ascarite (NaOH + CaO). H_2O produced is absorbed by anhydrous $CaCl_2$ or $Mg(ClO_4)_2$. Increase in masses of these absorbing compounds gives the masses of CO_2 and CO_2 and CO_2 produced. We of $C = \frac{12}{44} \times \frac{Mass \text{ of } CO_2 \text{ formed}}{Mass \text{ of compound taken}} \times 100$, where CO_2 is CO_2 is CO_2 formed and are constant. | | Nitrogen | (i) Dumas method : Nitrogen containing organic compound is heated with CuO in an atmosphere of CO ₂ . $C_xH_yN_z + \left(2x + \frac{y}{2}\right) \text{CuO} \longrightarrow x\text{CO}_2 + \frac{y}{2} \text{H}_2\text{O} + \frac{z}{2} \text{N}_2 + \left(2x + \frac{y}{2}\right) \text{Cu}$ $N_2 \text{ evolved gets collected over conc. KOH solution which absorbs all other gases.}$ % of $N = \frac{28}{22400} \times \frac{\text{Vol. of N}_2 \text{ at STP}}{\text{Mass of compound taken}} \times 100 \text{ , % of N} = \frac{1.4 \times \text{Normality of acid} \times \text{Vol. of acid used}}{\text{Mass of compound taken}}$ (ii) Kjeldahl's method : Organic compound + $H_2\text{SO}_4$ (conc.) \longrightarrow (NH ₄) ₂ SO ₄ $\xrightarrow{2\text{NaOH}}$ Na ₂ SO ₄ + 2NH ₃ + 2H ₂ O $2\text{NH}_3 + \text{H}_2\text{SO}_4 \longrightarrow (\text{NH}_4)_2\text{SO}_4$ % of $N = \frac{1.4 \times \text{Molarity of acid} \times \text{Vol. of acid used} \times \text{Basicity of acid}}{\text{Mass of compound taken}}$ | | Halogens | Carius method: Halogen in organic compound is precipitated as silver halide by boiling with conc. HNO ₃ and then adding AgNO ₃ . $X \xrightarrow{\text{HNO}_3, \Delta} \text{AgX} \downarrow$ % of Cl = $\frac{35.5}{143.5} \times \frac{\text{Mass of AgCl formed}}{\text{Mass of compound taken}} \times 100$ % of Br = $\frac{80}{188} \times \frac{\text{Mass of AgBr formed}}{\text{Mass of compound taken}} \times 100$, % of I = $\frac{127}{235} \times \frac{\text{Mass of AgI formed}}{\text{Mass of compound taken}} \times 100$ | | Sulphur | Carius method: Sulphur in organic compound is converted into H_2SO_4 by boiling with Na_2O_2 or conc. HNO_3 and is precipitated as $BaSO_4$ by adding excess of $BaCl_2$ solution in water. $S \xrightarrow{\text{(i) } HNO_3, \Delta \atop \text{(ii) } BaCl_2} \xrightarrow{\text{BaSO}_4 \downarrow \atop \text{White ppt.}} BaSO_4 \downarrow$ White ppt. % of $S = \frac{32}{233} \times \frac{Mass \text{ of } BaSO_4 \text{ formed}}{Mass \text{ of compound taken}} \times 100$ | Iodine method: Organic compound $\xrightarrow{\Delta}$ O₂ + Other gaseous products $[2C + O_2 \xrightarrow{1373 \text{ K}} 2CO] \times 5$ $[I_2O_5 + 5CO \longrightarrow I_2 + 5CO_2] \times 2$ Oxygen $10C + 5O_2 + 2I_2O_5 \longrightarrow 10CO_2 + 2I_2$ % of O = $\frac{32}{88} \times \frac{\text{Mass of CO}_2 \text{ formed}}{\text{Mass of compound taken}} \times 100$; % of O = $\frac{5 \times 16}{2 \times 127} \times \frac{\text{Mass of I}_2 \text{ formed}}{\text{Mass of compound taken}} \times 100$ # PEEP INTO PREVIOUS YEARS - 5. In Carius method of estimation of halogens, 250 mg of an organic compound gave 141 mg of AgBr. The percentage of bromine in the compound is (At. mass of Ag = 108; Br = 80) - (a) 48 - (b) 60 - (c) 24 - (d) 36 (JEE Main 2015) - 6. Sodium extract is heated with concentrated HNO₃ before testing for halogens because - (a) Ag₂S and AgCN are soluble in acidic medium - (b) silver halides are totally insoluble in nitric acid - (c) S²⁻ and CN⁻, if present, are decomposed by conc. HNO3 and hence do not interfere in the - (d) Ag reacts faster with halides in acidic medium. (Online JEE Main 2016) # Points For Extra Scoring Blood is a buffer containing carbonic acid (H₂CO₃) and bicarbonate ions (HCO₃), small amounts of the acid or base produced from the spicy food do not disturb its pH. - Indicator used in acid-base titration should be such that $pK_{Indicator} = pH$ at the equivalent point. - For a colour change of an indicator, $pH = pK_{Indicator} + 1$, *i.e.*, indicator have a useful colour change over a pH range of 2 units. - In the titration of a weak acid, at half the equivalence point (half-neutralisation), $pH = pK_a$. - Messenger's method is used for estimation of sulphur. It this method, the organic compound is heated with alkaline KMnO₄ solution when sulphur present in the organic compound is oxidised to K₂SO₄ which is then estimated as BaSO₄. - Rectified spirit contains about 95% alcohol (b.p. 351 K) and 5% water (b.p. 373 K) but alcohol and water cannot be separated from this mixture even though their boiling points to differ by 22 K. To remove water from such mixture (alcohol and water) azeotropic distillation is used. # Answer Key For Peep Into Previous Years - (d) - (c) - 1. Which of the following does not give borax bead test? - (a) Cr3+ - (b) Cu²⁺ - (c) Mn^{2+} - (d) Pb^{2+} - 2. In the test of basic radicals, which reagent is used in IVth group? - (a) $H_2S + HCl$ - (b) $NH_4OH + NH_4Cl$ - (c) $NH_4OH + NH_4Cl + H_2S$ gas - (d) $NH_4OH + NH_4Cl + (NH_4)_2CO_3$ - 3. Which of the following groups constitute basic radicals of fourth group? - (a) Pb^{2+} , Hg^{2+} , Cd^{2+} (b) Zn^{2+} , Mn^{2+} , Ni^{2+} - (c) Al^{3+} , Fe^{3+} , Cr^{3+} (d) Ca^{2+} , Sr^{2+} , Ba^{2+}