# ESSENTIAL CONCEPTS OF PHYSICAL CHEMISTRY

Get well-prepared for exams with quick revision of important concepts of physical chemistry.



# **Solid State**

#### Packing efficiency

 $= \frac{\text{Volume occupied by two spheres in the unit cell}}{\text{Total volume of the unit cell}} \times 100$ 

- Mass of the atoms of unit cell = Number of atoms in a unit cell (Z) $\times$  Mass of atom  $(M_{atom})$
- Mass of one atom =  $\frac{\text{Molar mass } (M)}{\text{Avogadro's constant } (N_A)}$
- Density ( $\rho$ ) of unit cell of a cubic crystal =  $\frac{ZM}{V \times N_A} = \frac{ZM}{a^3 N_A}$
- Bragg's equation:  $2d \sin \theta = n\lambda$
- Number of octahedral voids = No. of particles present in the close packing
- Number of tetrahedral voids = 2 × No. of octahedral voids

#### **Characteristics of Different Types of Unit Cells**

| Crystal | No. of atom(s)/<br>unit cell | Packing efficiency | C.No. | Relation in d, a and r  |
|---------|------------------------------|--------------------|-------|-------------------------|
| scc     | 1                            | 52.4%              | 6     | r = d/2 = a/2           |
| bcc     | 2                            | 68%                | 8     | $r=d/2=\sqrt{3}a/4$     |
| fcc     | 4                            | 74%                | 12    | $r = d/2 = a/2\sqrt{2}$ |

| Void               | Radius Ratio                |  |  |
|--------------------|-----------------------------|--|--|
| Triangular         | $0.155 \le r^+/r^- < 0.225$ |  |  |
| Tetrahedral        | $0.225 \le r^+/r^- < 0.414$ |  |  |
| Octahedral         | $0.414 \le r^+/r^- < 0.732$ |  |  |
| Body-centred cubic | $0.732 \le r^+/r^- < 1$     |  |  |

### Solids on the Basis of Electrical Properties

- Conductors: Electrical conductivity, 10<sup>4</sup> to 10<sup>7</sup> ohm<sup>-1</sup> m<sup>-1</sup>
- Insulators: Electrical conductivity,  $10^{-20}$  to  $10^{-10}$  ohm<sup>-1</sup> m<sup>-1</sup>
- Semiconductors: Electrical conductivity, 10<sup>-6</sup> to 10<sup>4</sup> ohm<sup>-1</sup> m<sup>-1</sup>
  - n-type semiconductors: Group 14 elements doped with group 15 elements, free electrons increase conductivity.
  - p-type semiconductors: Group 14 elements doped with group 13 elements, holes increase conductivity.

#### Solutions

- Molality  $(m) = \frac{M}{\rho \frac{MM_2}{1000}}$  Molarity  $(M) = \frac{n_1}{(n_1M_1 + n_2)}$
- Henry's law: p<sub>A</sub> = K<sub>H</sub>·x<sub>A</sub>: K<sub>H</sub> increases with increase temperature implying that solubility decreases with increase temperature at the same pressure.
- Raoult's law: p<sub>1</sub> = p<sub>1</sub>°x<sub>1</sub>, this law is applicable only if th components form a homogeneous mixture.
- Dalton's law of partial pressure:  $p_{\text{total}} = p_1 + p_2 + ... p_n$  a two components system,  $p_{\text{total}} = p_1^{\circ} + (p_2^{\circ} - p_1^{\circ})x_2$

#### **Ideal and Non-ideal Solutions**

| Ideal Solutions                                        | Non-ideal Solutions                                          |  |
|--------------------------------------------------------|--------------------------------------------------------------|--|
| $p_1 = x_1 p_1^{\circ}; p_2 = x_2 p_2^{\circ}$         | $p_1 \neq x_1 p_1^{\circ}; p_2 \neq x_2 p_2^{\circ}$         |  |
| $\Delta H_{\text{mix}} = 0, \Delta V_{\text{mix}} = 0$ | $\Delta H_{\text{mix}} \neq 0, \Delta V_{\text{mix}} \neq 0$ |  |
| $A - B$ interactions $\approx A - A$                   | $A - B$ interactions $\neq A$                                |  |
| and $B - B$ interactions.                              | and B - B interactions                                       |  |

#### Non-ideal Solutions Showing Positive and Negative Deviations from Raoult's Law

| Solutions showing positive deviation                | Solutions showing negative deviation             |
|-----------------------------------------------------|--------------------------------------------------|
| $A-B \ll A-A \text{ or } B-B$                       | A-B >> A-A  or  B-                               |
| interactions.                                       | interactions.                                    |
| $\Delta H_{\rm mix} > 0$ , $\Delta V_{\rm mix} > 0$ | $\Delta H_{\rm mix} < 0, \Delta V_{\rm mix} < 0$ |
| $p_1 > p_1^{\circ} x_1$                             | $p_1 < p_1^{\circ} x_1$                          |

#### **Colligative Properties**

- Relative lowering of vapour pressure:  $(p_A^{\circ} p_A)/p_A^{\circ} = x_E$
- Elevation in boiling point:  $\Delta T_b = T_b T_b^{\circ} = K_b m$
- Depression in freezing point:  $\Delta T_f = T_f^{\circ} T_f = K_f m$
- Osmotic pressure:  $\pi = CRT = (n/V)RT$

#### van't Hoff Factor and its Significance

- $i = \frac{\text{Observed value of colligative property}}{\text{Calculated value of colligative property}}$
- For association of solute:  $nA \rightarrow (A)_n$ Degree of association  $(\alpha) = (1-i) n/n - 1; i < 1$
- For dissociation of solute:  $(A)_n \rightarrow nA$ Degree of dissociation  $(\alpha) = i - 1/n - 1$ ; i > 1
- Modified colligative properties:
  - $p_A^{\circ} p_A/p_A^{\circ} = ix_B; \Delta T_b = iK_b m; \Delta T_f = iK_f m; \pi = iCRT$



# ESSENTIAL CONCEPTS OF ORGANIC CHEMISTRY

Get well-prepared for exams with quick revision of important concepts of organic chemistry.

# Organic Chemistry - Some Basic Principles and Techniques

#### **IUPAC Nomenclature**

Cname = prefixes + word root + 1° suffix + 2° suffix



#### **Order of Species Showing Inductive Effect**

ter of Species Showing Resonance or Mesomeric Effect effect: —Cl, —Br, —I, —NH<sub>2</sub>, —NHR, —NR<sub>2</sub>, —NHCOR, NH, —OR, —SR, —SH, —OCH<sub>3</sub>, —OCOR

d order in compounds which exhibit resonance otal number of bonds between two atoms in all the structures Total number of resonating structures

#### Hyperconjugation

er of hyperconjugating structures ∝ number of α-hydrogens ility ∝ 1/heat of hydrogenation ∝ polarity ∝ dipole moment and length

#### Stability of Free Radicals

pility of free radicals  $\propto +I$ -effect  $\propto \frac{1}{-I$ -effect  $\propto +R$ -effect  $\propto \frac{1}{-R$ -effect  $> Ph_2\dot{C}H > Ph\dot{C}H_2 > Allyl > 3^\circ > 2^\circ > 1^\circ > \dot{C}H_3 > CH_2 = \dot{C}H$ 

## **Stability of Carbocations**

pility of carbocations  $\propto +I$ -effect  $\propto \frac{1}{-I$ -effect  $\propto +R$ -effect  $\propto \frac{1}{-R$ -effect  $> Ph_2\overset{+}{C}H > Ph\overset{+}{C}H_2 > Allyl > 3^\circ > 2^\circ > 1^\circ > \overset{+}{C}H_3$ 

#### **Stability of Carbanions**

• Stability of carbanions  $\propto -I$ -effect  $\propto \frac{1}{+I$ -effect  $\propto -R$ -effect  $\propto \frac{1}{+R$ -effect Ph<sub>3</sub> $\bar{C}$  > Ph<sub>2</sub> $\bar{C}$ H > Ph $\bar{C}$ H<sub>2</sub> > Allyl >  $\bar{C}$ H<sub>3</sub> > 1° > 2° > 3°

#### **Stability of Carbene**

Triplet > Singlet

# **Thin Layer Chromatography**

Retention factor  $(R_f)$ 

 $= \frac{\text{Distance travelled by the compound from base line } (x)}{\text{Distance travelled by the solvent from base line } (y)}$ 

# **Quantitative Analysis**

• % of C = 
$$\frac{12}{44} \times \frac{\text{mass of CO}_2 \text{ formed}}{\text{mass of compound taken}} \times 100$$

(Liebig's combustion method)

• % of H = 
$$\frac{2}{18} \times \frac{\text{mass of H}_2\text{O formed}}{\text{mass of compound taken}} \times 100$$

• % of N =  $\frac{28}{22400} \times \frac{\text{vol. of N}_2 \text{ at STP}}{\text{mass of compound taken}} \times 100$ 

• % of N = 
$$\frac{1.4 \times \text{normality of acid} \times \text{vol. of acid used}}{\text{mass of compound taken}}$$

(Kjeldahl's

method)

method)

• % of Cl =  $\frac{35.5}{143.5} \times \frac{\text{mass of AgCl formed}}{\text{mass of compound taken}} \times 100^{-1}$ 

• % of Br = 
$$\frac{80}{188} \times \frac{\text{mass of AgBr formed}}{\text{mass of compound taken}} \times 100$$

(Carius method)

• % of 
$$I = \frac{127}{235} \times \frac{\text{mass of AgI formed}}{\text{mass of compound taken}} \times 100$$

• % of S = 
$$\frac{32}{233} \times \frac{\text{mass of BaSO}_4 \text{ formed}}{\text{mass of compound taken}} \times 100$$

• % of 
$$P = \frac{62}{222} \times \frac{\text{mass of Mg}_2 P_2 O_7 \text{ formed}}{\text{mass of compound taken}} \times 100$$

(Ignition method)

• % of O = 
$$\frac{32}{88} \times \frac{\text{mass of CO}_2 \text{ formed}}{\text{mass of compound taken}} \times 100$$

(Iodine method)

• % of O = 
$$\frac{5 \times 16}{2 \times 127} \times \frac{\text{mass of I}_2 \text{ formed}}{\text{mass of compound taken}} \times 100$$